Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, nr 3 | 272--281
Tytuł artykułu

Synthesis and Characterization of Zinc Oxide-Zeolite Photocatalyst Nanocomposite for Heavy Metals Degradation

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Heavy metals are the major contributors to pollution due to their enduring presence and poisonous characteristics. Wastewater that contains heavy metals is classified as harmful and has the potential to contaminate the environment. Large-scale disposal of heavy metal discharged into the environment causes significant environmental harm. Commonly seen heavy metals in water deposits include non-biodegradable metals such as cadmium (Cd), copper (Cu), lead (Pb) and iron (Fe). To mitigate the adverse effects of environmental contamination, it is necessary to handle wastewater containing heavy metals properly and optimally. Photocatalysis is a technology that involves the breakdown of pollutants with the use of light. This study aims to synthesize and characterize the nanocomposite of ZnO-Zeolite photocatalyst on the degradation of Cd, Cu, Fe, and Pb heavy metals. The ZnO-Zeolite nanocomposites were characterized by using SEM-EDX, XRD, and BET methods. The degradation caused by exposure to ultraviolet (UV) light occurs within the time of between 60 to 120 minutes, with a pH range of 6–8. The removal of heavy metals proceeds within a time frame of one hour and two hours, resulting in an optimal percentage removal of metals that approaches 100%. The composite showed a surface area of 19.436 m2/g, a pore size of 17.227 Å, and a total pore volume of 0.112 cm3/g. The heavy metals Cu, Fe, and Pb exhibited the highest rates of degradation, reaching their maximum percentages after 60 minutes when exposed to ultraviolet radiation under ideal conditions at varying pH levels (pH 6–8). More precisely, the degradation percentage of Cu metal was 95.4% at pH 7, Fe metal achieved 96.1% at pH 6, while Pb metal obtained 95.5% at pH 8. The Cd metal removal percentage was found to be 98.9% under the conditions of a pH of 8 and an irradiation time of 120 minutes, indicating high effectiveness.
Słowa kluczowe
Wydawca

Rocznik
Strony
272--281
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Chemical Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Jl.mbang-Prabumulih KM.32 Indralaya, Ogan Ilir 30662, South Sumatera, Indonesia, tuty_agustina@unsri.ac.id
  • Water and Wastewater Engineering Research Group, UPT Integrated Laboratory, Universitas Serasan, Jl. H. Pangeran Danal No. 142, Muara Enim 31312, South Sumatra, Indonesia
  • Master Program of Chemical Engineering, Enviromental Technology, Universitas Sriwijaya, Jl. Srijaya Negara, Bukit Besar, Palembang 30139, South Sumatera, Indonesia, trikarimahsafrird@gmail.com
  • Chemical Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Jl.mbang-Prabumulih KM.32 Indralaya, Ogan Ilir 30662, South Sumatera, Indonesia, e_melwita@yahoo.com
  • Chemical Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Jl.mbang-Prabumulih KM.32 Indralaya, Ogan Ilir 30662, South Sumatera, Indonesia, davidbahrin@ft.unsri.ac.id
  • Educational Laboratory Institution, UPT Integrated Laboratory, Universitas Sriwijaya, Jl. Raya PalembangPrabumulih KM 32 Indralaya, Ogan Ilir 30662, South Sumatra, Indonesia, wiwikdarno211@gmail.com
  • Universiti Kuala Lumpur Malaysian Institute of Chemical and Bioengineering Technology, Alor Gajah, Melaka 78000, Malaysia, rianyzagayatri08@gmail.com
  • Department of Polymer Science and Technology, Faculty of Science, Prince of Songkla University (PSU), Hat Yai, Songkla, 90110, Thailand
Bibliografia
  • 1. Agustina, T.E., Habiburrahman, M., Amalia, F., Arita, S., Faizal, M., Novia, and Gayatri, R. 2022. Reduction of copper, iron, and lead content in laboratory wastewater using zinc oxide photocatalyst under solar irradiation. Journal of Ecological Engineering, 23(10), 107–15.
  • 2. Alfarisa, S., Rifai, D.A., and Toruan, P.L. 2018. Studi Difraksi Sinar-X Struktur Nano Seng Oksida (ZnO). Risalah Fisika, 2(2), 53–57.
  • 3. Aprilia, A., Hanavi, D.P., Safriani, L., Bahtiar, A., Suryaningsih, S., and Agustini, R.R.D. 2020. Sifat Fotokatalitik Serbuk ZnO terdoping Aluminium dalam Mendegradasi Larutan Metil Biru. Jurnal Ilmu dan Inovasi Fisika,
  • 4(1), 34–45. 4. Aziz, K.H.H., and Mustafa, F.S. 2023. Advanced oxidation processes for the decontamination of heavy metal complexes in aquatic systems: A review. Case Studies in Chemical and Environmental Engineering, 9, 100567, 1-12.
  • 5. Ciptasari, N.I., Handayani, M., Kaharudin, C.L., Afkauni, A.A., Hatmanto, A.D., Anshori, I., Maksum, A., Riastuti, R., and Soedarsono, J.W. 2022. Synthesis of nanocomposites reduced graphene oxidesilver nanoparticles prepared by hydrothermal technique using sodium borohydride as a reductor for photocatalytic degradation of Pb ions in aqueous solution. Eastern-European Journal of Enterprise Technologies, 6(5–120), 54–62.
  • 6. Fitria, A. and Surya, P. K. (2018). Karakteristik Zeolit ZSM-5 dengan Menggunakan Variasi Template dalam Sintesis. Journal ITS, 2–6.
  • 7. Gayatri, R., Agustina, T.E., Moeksin, R., Bahrin, D., and Gustini. 2021. Preparation and characterization of ZnO-zeolite nanocomposite for photocatalytic degradation by ultraviolet light. Journal of Ecological Engineering, 22(2), 178–86.
  • 8. Hidayatuloh, Subagio, A., and Nurhasanah, I. 2012. Fotokatlitik ZnO:KA pada penjernihan air kali banger semarang. Jurnal Sains dan Matematika, 20(4), 4.
  • 9. Inggrid, D.A., Susanti, E.Hp., and Santosa, E.O.G. 2015. Fotokatlitik Reduksi Ion Cu(II) dan Fotodegradasi Parasetamol Yang dikatalisis TiO2 Sebagai Alternatif Pengolahan Limbah. Alchemy Jurnal Penelitian Kimia, 11(2), 163-174
  • 10. Irianti, T.T, Kuswadi, Nuranto, S., and Budiyatni, A. 2017. Logam Berat dan Kesehatan. Grafika Indah, 1–131.
  • 11. Jundana, Fadhli, A., Hastuti, D., and Budihastuti, R. 2016. Daya Akumulasi Logam Berat Tembaga (Cu) pada Akar dan Daun Avicennia marina (Forsk.) berdasarkan fase pertumbuhan yang berbeda di Pantai Mangkang Semarang. Jurnal Biologi, 5(3), 36–46.
  • 12. Kamarati, Fathirizki A.K., Marlon, I.A., and Sumaryono M. 2018. Heavy metal content iron (Fe), lead (Pb) and manganese (Mn) in the water of the Santan River. Jurnal Penelitian Ekosistem Dipterokarpa, 4, 50–56.
  • 13. Kusdianto, K., Widiyastuti, W., Shimada, M., Nurtono, T., Machmudah, S., and Winardi, S. 2019. Photocatalytic activity of ZnO-Ag nanocomposites prepared by a one-step process using flame pyrolysis. International Journal of Technology, 10(3), 571–81.
  • 14. Lastriyanto, A., Kuncahyo, E.D., and Komar, N. 2011. Berbasis Teknologi Irradiasi Ultraviolet (Kajian Dosis UV), Jurnal Rekayasa Mesin, 2(1), 7–16
  • 15. Mahdavi, Shahriar, Jalali, M., and Afkhami, A. 2012. Removal of heavy metals from aqueous solutions using Fe3 O4 , ZnO, and CuO nanoparticles. Journal of Nanoparticle Research, 14(8).
  • 16. Mahreni. 2010. Sintesis Membran Nanokomposit Nafion-SiO2 Menggunakan metode Sol Gel. Jurnal Sains Materi Indonesia, II(2), 129–33.
  • 17. Nuraini, I., and Sabhan. 2015. Analisis Logam Berat Dalam Air Minum Isi Ulang (Amiu) Dengan Menggunakan Spektrofotometri Serapan Atom (SSA): Analysis of The Levels of Heavy Metal In Refill Using Atomic Absorption Spectrophotometry (AAS). Gravitasi, 14(1), 36–43.
  • 18. Nurhidayati, Didik, L.A., and Zohdi, A. 2021. Identifikasi Pencemaran Logam Berat di Sekitar Pelabuhan Lembar Menggunakan Analisa Parameter Fisika dan Kimia.
  • 19. Ong, C.B., Ng, L.Y. and Mohammad, A.W. 2018. A Review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renewable and Sustainable Energy Reviews, 81, 536–551.
  • 20. Prasetyaningrum, A., Ariyanti, D., Satriadi, H., S. Suherman., P. Purwanto., Pramudono, B., and G. R. Prinanda. 2020. Effect UV irradiation and ozonation (O3 ) process for degradation of copper from electroplating wastewater. AIP Conf. Proc., 2197, 1100011–110001-5; https://doi.org/10.1063/1.5140954
  • 21. Rahman, A., Nurjayadi, M., Wartilah, R., Kusrini, E., Prasetyanto, E.A., and Degermenci, V. 2018. Enhanced activity of TiO2 /natural zeolite composite for degradation of methyl orange under visible light irradiation. International Journal of Technology, 9(6), 1159–67.
  • 22. Ramadhini, T.K., T.E.Agustina, Melwita, E., and Wijayanti, M.S. 2023. Photocatalytic degradation of heavy metals Cd, Cu, Fe and Pb using ZnO-zeolite nanocomposite. Indonesian Journal of Environmental Management and Sustainability, 7, 147-152.
  • 23. Said, N.I. 2010. Metoda Penghilangan Logam Berat (As, Cd, Cr, Ag, Cu, Pb, Ni dan Zn) di Dalam Air Limbah Industri. Jurnal Air Indonesia, 6(2), 136–48.
  • 24. Saravanan, R., Gupta, V.K., V. Narayanan, and A. Stephen. 2013. Comparative study on photocatalytic activity of ZnO prepared by different methods. Journal of Molecular Liquids, 181, 133–41.
  • 25. Sharfan, N., Shobri, A., Anindria, F.A., Mauricio, R., Tafsili, M.A.B., and Slamet. 2018. Treatment of batik industry waste with a combination of electrocoagulation and photocatalysis. International Journal of Technology, 9(5), 936–43.
  • 26. Sucahya, Noviska, T., Permatasari, N., and Nandiyanto, A.B.D. 2016. Review: Fotokatalisis untuk Pengolahan Limbah Cair. Jurnal Integrasi Proses, 6(1), 1–15.
  • 27. Tuas, Angelina, M., and A. Masduqi. 2019. Removal of copper content in jewelry industry wastewater using commercial activated carbon. Pollution Research, 38, 53–58.
  • 28. Winarmadani, S. 2019. Analisis Kandungan Logam Berat (Pb, Cd, Cu, Fe) Pada Air Permukaan Di Rawa Pening Kabupaten Semarang Jawa Tengah. Encephale, 53(1), 59–65.
  • 29. Wismayanti, Dewa, Ni Diantariani, and Santi, S. 2015. Pembuatan Komposit ZnO-Arang Aktif Sebagai Fotokatalis Untuk Mendegradasi Zat Warna Metilen Biru. Jurnal Kimia, 9(1), 109–16.
  • 30. Yesica, S. 2016. Sintesis Dan Karakterisasi Nanokomposit TiO2 /Zeolit Alam Malang Dengan Variasi Waktu Pemeraman, 1–91.
  • 31. Zawadzki, P., Kudlek E., and Dudziak M. 2018. Kinetics of the photocatalytic decomposition of Bisphenol A on modified photocatalysts. Journal of Ecological Engineering, 19(4), 260-268.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5429d696-4fa4-4102-b6bc-2e6529513d41
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.