Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 54, nr 1 | 212--232
Tytuł artykułu

Pythagorean harmonic summability of Fourier series

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper explores the possibility for summing Fourier series nonlinearly via the Pythagorean harmonic mean. It reports on new results for this summability with the introduction of new concepts like the smoothing operator and semi-harmonic summation. The smoothing operator is demonstrated to be Kalman filtering for linear summability, logistic processing for Pythagorean harmonic summability and linearized logistic processing for semi-harmonic summability. An emerging direct inapplicability of harmonic summability to seismic-like signals is shown to be resolvable by means of a regularizational asymptotic approach.
Wydawca

Rocznik
Strony
212--232
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
Bibliografia
  • [1] N. K. Bary, A Treatise on Trigonometric Series, Pergamon Press, London, 1964.
  • [2] E. C. Titchmarsh, The Theory of Functions, Oxford University Press, London, 1952.
  • [3] H. Iwaniec and E. Kowalski, Analytic Number Theory, AMS, Providence, 2004.
  • [4] S. M. Nikolski, A Course of Mathematical Analysis, Vol. 2, Mir Publishers, Moscow, 1977.
  • [5] A. Castillo, J. Chavez, and H. Kim, Note on divergent Fourier series and λ-permutations, Aust. J. Math. Anal. Appl. 14(2017), no. 1, 1-9.
  • [6] G. M. Petersen, Summability of a class of Fourier series, Proc. Amer. Math. Soc. 11(1960), no. 6, 994-998.
  • [7] K. Kanno, On the absolute summability of Fourier series (II), Tohoku Math. J. 13(1961), no. 12, 201-215.
  • [8] F. C. Hsiang, On ∣C,1∣ summability factors of a Fourier series at a given point, Pacific J. Math. 33(1970), no. 1, 139-147.
  • [9] P. G. Chandra and D. Dikshit, On the ∣B∣ and ∣E,q∣ summability of a Fourier series, its conjugate series and their derived series, Indian J. Pure Appl. Math. 12(1981), no. 11, 1350-1360.
  • [10] B. E. Rhoades, Matrix summability of Fourier series based on inclusion theorems II, J. Math. Anal. Appl. 130(1988), no. 2, 525-537.
  • [11] H. Bor, A note on local property of factored Fourier series, Nonlinear Anal. 64(2006), no. 3, 513-517.
  • [12] H. K. Nigam and K. Sharma, On (E,1)(C,1) summability of Fourier series and its conjugate series, Int. J. Pure Appl. Math. 82(2013), no. 3, 365-375.
  • [13] F. Weisz, Θ-summability of Fourier series, Acta Math. Hungar. 103(2004), 139-176.
  • [14] F. Weisz, Marcinkiewicz summability of Fourier series, Lebesgue points and strong summability, Acta Math. Hungar. 153(2017), 356-381.
  • [15] H. K. Nigam, M. Mursaleen, and S. Rani, Approximation of functions using generalized Zygmund class, Adv. Differ. Equ. 2021(2021), 34.
  • [16] A. Mishra, V. N. Mishra, and M. Mursaleen, Approximation of functions of f(x,y) of generalized Lipschitz class by double Hausdorff matrix summability method, Adv. Differ. Equ. 2020(2020), 681.
  • [17] A. H. Nayfe, Perturbation Methods, John Wiley & Sons, New York, 1973.
  • [18] N. H. S. Haidar, Interpolatory minimal series for reconstructing an infinite Fourier series, Bull. Math. Anal. Applic. 12(2020), no. 3, 34-45.
  • [19] S. W. Semmes,Nonlinear Fourier analysis, Bull. Amer. Math. Soc. 20(1989), 1-18.
  • [20] K. Rauf, J. O. Omolehin, and D. J. Evans, Further results on strong summability of Fourier series, Int. J. Comput. Math. 25(2007), 331-339.
  • [21] P. Padhy, U. Misra, and M. Misra, Summability Methods and its Applications, LAP Lamhert, New Delhi, 2012.
  • [22] M. Mursaleen, Applied Summability Methods, Springer Briefs in Mathematics, Springer, Berlin, 2014.
  • [23] M. Mursaleen and F. Basar, Sequence Spaces, Topics in Modern Summability Theory, Taylor & Francis Group, New York, 2020.
  • [24] D. A. Smith and W. F. Ford, Numerical comparisons of nonlinear convergence accelerators, Math. Comput. 38(1982), no. 158, 481-499.
  • [25] O. Costin, G. Luo, and S. Tanveer, Divergent expansion, Borel summability and 3D Navier-Stokes equation, Philos. Trans. Royal Soc. A 366(2008), no. 1876, 2775-2788.
  • [26] A. I. Zemlyanukhin and A. V. Bochkarev, Nonlinear summation of power series and exact solutions of evolution equations, Russian Math. 62(2018), no. 1, 29-35.
  • [27] Y. Qin, Integral and Discrete Inequalities and Their Applications, vol. I, Birkhäuser, Basel, 2016.
  • [28] O. P. Varshney, On the absolute harmonic summability of a series related to Fourier series, Proc. Amer. Math. Soc. 10(1959), no. 5, 784-789.
  • [29] R. M. May, Simple mathematical models with complicated dynamics, Nature 261, (1976), 459-467.
  • [30] M. Bath, Mathematical Aspects of Seismology, Elsevier, Amsterdam, 1968.
  • [31] V. P. Tanana, Methods for Solution of Nonlinear Operator Equations, VSP, Utrecht, 1997.
  • [32] N. H. S. Haidar, A Green’s function approach to invertibility, Math. Japonica 50(1999), no. 1, 10-18.
  • [33] N. H. S. Haidar, The collocational double series inverse in quasi-linear regularizer form, 143 J. Inv. Ill-Posed Problems 7(1999), no. 2, 127-144.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-53a2a0a8-e1be-422c-b84a-42ee63b1db50
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.