Czasopismo
2004
|
Vol. 44, nr 1
|
67--92
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In this note we prove that a sum form functional equation arising in information theory, which holds for all k-dimensional (k > 1 is fixed) complete probability distributions, is stable.
Słowa kluczowe
Rocznik
Tom
Strony
67--92
Opis fizyczny
Bibliogr. 10 poz.
Twórcy
autor
- Institute of Mathematics and Informatics, University of Debrecen, H-4010, Debrecen P.O. Box 12, Hungary
Bibliografia
- [1] J. Aczel, Z. Daróczy, On Measures o f Information and Their Characterization, Academic Press, New York-San Francisco-London, 1975.
- [2] B. Ebanks, P. Sahoo and W. Sander, Characterizations of information measures, World Scientific, Singapure-New Yersey-London-Hong Kong, 1998.
- [3] G. L. Forti, Hyers-Ulam stability of functional eąuations in several variables, Aequations Math. 50 (1995), 143-190.
- [4] R. Ger, A survey of recent results on stability of functional equations, Proc. of the 4th International Conference of Functional Equations and Inequalities, Pedagogical University of Cracow, 1994, 5-36.
- [5] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of functional equations in several variables, Progress in Nonlinear Differential Equations and their Applications, 34. vol. 27. Birkhauser Verlag, Basel-Boston, 1998.
- [6] L. Losonczi and Gy. Maksa, On some functional equations of the information theory, Acta Math. Acad. Sci. Hungar. 39 (1982), 73-82.
- [7] Gy. Maksa, On the stability of a sum form equation, Results in Mathematics 26 (1994), 342-347.
- [8] Gy. Maksa, The role of boundedness and nonnegativity in characterizing of entropies of degree α, Publ. Math., Debrecen 36 (1989), 179-185.
- [9] F. Radó and J. A. Baker, Pexider’s equation and aggregation of allocations, Aequationes Math. 32 (1987), 227-239.
- [10] L. Szekelyhidi, Ulam’s problem, Hyers’s solution - and to where they led, Functional equations and inequalities, Edited by Th. M. Rassias, Dordrecht: Kluwer Academic Publishers. Math. Appl., Dord. 518 (2000), 259-285.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-53745ddf-f0e3-40f3-93a4-cfdbcaa5618e