Czasopismo
2014
|
Vol. 49, No. 4
|
179--189
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Among many sources of errors that influence Global Navigation Satellite System (GNSS) observations, tropospheric delay is one of the most significant. It causes nonrefractive systematic bias in the observations on the level of several meters, depending on the atmospheric conditions. Tropospheric delay modelling plays an important role in precise positioning. The current models use numerical weather data for precise estimation of the parameters that are provided as a part of the Global Geodetic Observation System (GGOS). The purpose of this paper is to analyze the tropospheric data provided by the GGOS Atmosphere Service conducted by the Vienna University of Technology. There are predicted and final delay data available at the Service. In real time tasks, only the predicted values can be used. Thus it is very useful to study accuracy of the forecast delays. Comparison of data sets based on predicted and real weather models allows for conclusions concerning possibility of using the former for real time positioning applications. The predicted values of the dry tropospheric delay component, both zenith and mapped, can be safely used in real time PPP applications, but on the other hand, while using the wet predicted values, one should be very careful.
Słowa kluczowe
Rocznik
Tom
Strony
179--189
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
autor
- Department of Civil Engineering, Environmental Engineering and Geodesy, Koszalin University of Technology, jakub.kalita@tu.koszalin.pl
autor
- Institute of Geodesy, University of Warmia and Mazury in Olsztyn, zofia.rzepecka@uwm.edu.pl
autor
- Institute of Geodesy, University of Warmia and Mazury in Olsztyn, grzegorz.krzan@uwm.edu.pl
Bibliografia
- Böhm J., Schuh H. (2004) Vienna Mapping Functions in VLBI analyses, Geophysical Research Letters , Vol. 31, No. L01603, doi: 10.1029/2003GL018984.
- Böhm J., Werl B., Schuh H. (2006) Troposphere mapping functions for GPS and VLBI from ECMWF operational analysis data, Journal of Geophysical Research, Vol. 111, No. B02406, doi: 10.1029/2005JB003629.
- Böhm J., Schuh H. (2007) Troposphere gradients from the ECMWF in VLBI analysis, Journal of Geodesy, Vol. 81, No. 6-8, 403-408.
- Böhm J., Kouba J., Schuh H. (2008) Forecast Vienna Mapping Functions 1 for real-time analysis of space geodetic observations, Journal of Geodesy, Vol. 83, No. 5, 397-401.
- Chen Q., Song S., Zhu W. (2012) An Analysis for Accuracy of Tropospheric Zenith Delay Calculated from ECMWF/NCEP Data over Asia, Chinese Journal of Geophysics, Vol. 55, No. 4, 275-283.
- Davis J., Herring T., Shapiro A., Rogers E., Elgered G. (1985) Geodesy by Radio Interferometry: Effects of Atmospheric Modelling Errors on Estimates of Baseline Lenght, Radio Science, Vol. 20, No. 6, 1593-1607.
- Herring T.A. (1992) Modelling atmospheric delays in the analysis of space geodetic data, Proceedings of the symposium refraction of transatmosphericsignals in geodesy, eds. de Munck JC, Spoelstra TAT., Hague, 157-164.
- Ifadis I. (1986) The atmospheric delay of radio waves: Modeling the elevation dependence on a global scale, Technical Report 38L, Chalmers University of Technology, Gothenburg, Sweden.
- Jin S., Park J.U., Cho J.H., Park P.H. (2007) Seasonal variability of GPS-derived zenith tropospheric delay (1994–2006) and climate implications, Journal of Geophysical Research, Vol. 112, No. D9, DOI: 10.1029/2006JD007772.
- Marini J.W. (1972) Correction of satellite tracking data for an arbitrary tropospheric profile, Radio Science, Vol. 7, No. 2, 223-231.
- Leick A. (1994) GPS Satellite Surveying, Wiley-Interscience Publication, New York.
- Niell A.E. (1996) Global mapping functions for the atmosphere delay at radio wavelengths, Journal of Geophysical Research: Solid Earth, Vol. 101, No. B2, 3227-3246.
- Nilsson T., Böhm J., Wijaya D.D., Tresch A., Nafisi V., Schuh H. (2013) Path Delays in the Neutral Atmosphere, Atmospheric Effects in Space Geodesy, Springer Verlag, eds. Böhm J., Schuh H., 73-136.
- Shi J., Xu C., Guo J., Gao Y. (2014) Local troposphere augmentation for real-time precise point positioning, Earth, Planets and Space, 2014, No. 66:30, doi:10.1186/1880-5981- 66-30.
- Urquhart L., Nievinski F., Santos M.C., (2014) Assessment of troposphere mapping functions using three-dimensional ray-tracing, GPS Solutions, Vol. 18, No. 3, 345-354, DOI 10.1007/s10291-013-0334-8.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5342caf9-943e-46a1-a9b6-ce14e1a1c6a5