Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 9 (44) | 348--357
Tytuł artykułu

Model Reference Adaptive Control of SPS-Based Dual Active Bridge Converter with Constant Power Loading

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a new model reference adaptive-based control (MRAC) for a single-phase shift-modulated dual active bridge DC-DC converter (SPS-DAB) with constant power loading (CPL). The non-linear control algorithm, developed based on the reduced order model of the converter, is subjected to a thorough stability and convergence analysis. The efficacy of the proposed control strategy is verified through simulations conducted on MATLAB R2023a and PLECS 4.5.6, demonstrating its capability to counteract the destabilising effects of the CPL, while ensuring precise tracking of the dual active bridge (DAB) output voltage, even amidst parameter variations. Comparative analysis highlights the superior robustness and performance of the proposed approach over the conventional proportional-integral (PI) controllers.
Wydawca

Rocznik
Strony
348--357
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Department of Electrical/Electronic Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana, ekeffamp@gmail.com
  • Department of Electrical/Electronic Engineering, Ghana Communication Technology University, Accra, Ghana
  • Department of Electrical/Electronic Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
  • Department of Electrical/Electronic Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
  • Department of Electrical/Electronic Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
Bibliografia
  • AL-Nussairi, M. K., Bayindir, R., Padmanaban, S., Mihet-Popa, L. and Siano, P. (2017). Constant Power Loads (CPL) with Microgrids: Problem Definition, Stability Analysis and Compensation Techniques. Energies, 10(10), p. 1656. doi: 10.3390/en10101656.
  • Brando, G., Del Pizzo, A. and Meo, S. (2018). Modelreference adaptive control of a dual active bridge DC-DC converter for aircraft applications. In: SPEEDAM 2018 - Proceedings: International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 20–22 June 2018, Amalfi, Italy: IEEE, pp. 502–506. doi: 10.1109/SPEEDAM.2018.8445242.
  • Csizmadia, M. and Kuczmann, M. (2022) Extended Feedback Linearisation Control of Non-ideal DCDC Buck Converter in Continuous-conduction Mode, Power Electronics and Drives, 7(42), pp. 1–8. doi: 10.2478/pead-2022-0001.
  • Do, T. A., Nguyen, Q. D. and Vu, P. (2024). Design and Implementation of a Current-FED Dual Active Bridge Converter for an AC Battery. Journal of Electrical Engineering, 75(1), pp. 47–55. doi: 10.2478/jee-2024-0007.
  • Dragičević, T., Lu, X., Vasquez, J. C. and Guerrero, J. M. (2016). DC Microgrids – Part I: A Review of Control Strategies and Stabilization Techniques. IEEE Transactions on Power Electronics, 31(7), pp. 4876–4891. doi: 10.1109/TPEL.2015.2478859.
  • Hajji, S., Zayani, H., Bouaziz, N. and Ben Chehida, R. (2020). Sensorless Induction Motor Drive Based on Model Reference Adaptive System Scheme Utilising a Fictitious Resistance. Power Electronics and Drives, 5(41), pp. 199–213. doi: 10.2478/pead-2020-0015.
  • He, J., Chen, Y., Lin, J., Chen, J., Cheng, L. and Wang, Y. (2023). Review of Modeling, Modulation, and Control Strategies for the Dual-Active-Bridge DC/ DC Converter. Energies, 16(18), p. 6646. doi: 10.3390/en16186646.
  • Hossain, M. Z., Rahim, N. A. and Selvaraj, J. (2018). Recent Progress and Development on Power DC-DC Converter Topology, Control, Design and Applications: A Review. Renewable and Sustainable Energy Reviews, 81(Part 1), pp. 205230. doi: 10.1016/j.rser.2017.07.017.
  • Iqbal, M. T., Maswood, A. I., Dehghani Tafti, H., Tariq, M. and Bingchen, Z. (2020). Explicit Discrete Modelling of Bidirectional Dual Active Bridge DC-DC Converter using Multi-Time Scale Mixed System Model. IET Power Electronics, 13(18), pp. 4252–4260. doi: 10.1049/iet-pel.2020.0293.
  • Leonard, J. P. (2014). Nonlinear Modeling of DC Constant Power Loads with Frequency Domain Volterra Kernels. Available at: https://diginole.lib.fsu.edu/islandora/object/fsu%3A252857.
  • Liutanakul, P., Awan, A. and Pierfederici, S. (2010). Linear Stabilization of a DC Bus Supplying a Constant Power Load: A General Design Approach. IEEE Transactions on Power Electronics, 25(2), pp. 475–488. doi: 10.1109/TPEL.2009.2025274.
  • Lucas, K. E., Pagano, D. J., Plaza, D. A., VacaBenavides, D. A. and Ríos, S. J. (2020). Robust Feedback Linearization Control for DAB Converter Feeding a CPL. IFAC-PapersOnLine, 53(2), pp. 13402–13409. doi: 10.1016/j.ifacol.2020.12.178.
  • Meng, X., Jia, Y., Xu, Q., Ren, C., Han, X. and Wang, P. (2023). A Novel Intelligent Nonlinear Controller for Dual Active Bridge Converter with Constant 356 Power Loads. IEEE Transactions on Industrial Electronics, 70(3), pp. 2887–2896. doi: 10.1109/TIE.2022.3170608.
  • Mueller, J. A. and Kimball, J. W. (2018). An Improved Generalized Average Model of DC-DC Dual Active Bridge Converters. IEEE Transactions on Power Electronics, 33(11), pp. 9975–9988. doi: 10.1109/TPEL.2018.2797966.
  • Qin, H. and Kimball, J. W. (2012). Generalized Average Modeling of Dual Active BRIDGE DCDC Converter. IEEE Transactions on Power Electronics, 27(4), pp. 2078–2084. doi: 10.1109/TPEL.2011.2165734.
  • Radwan, A. A. A. and Mohamed, Y. A. R. I. (2012). Linear Active Stabilization of Converter-Dominated DC Microgrids. IEEE Transactions on Smart Grid, 3(1), pp. 203–216. doi: 10.1109/TSG.2011.2162430.
  • Rahimi, A. M., Williamson, G. A. and Emadi, A. (2010). Loop-Cancellation Technique: A Novel Nonlinear Feedback to Overcome the Destabilizing Effect of Constant-Power Loads. IEEE Transactions on Vehicular Technology, 59(2), pp. 650–661. doi: 10.1109/TVT.2009.2037429.
  • Rahimi, A. M. and Emadi, A. (2009). Active Damping in DC/DC Power Electronic Converters: A Novel Method to Overcome the Problems of Constant Power Loads. IEEE Transactions on Industrial Electronics, 56(5), pp. 1428–1439. doi: 10.1109/TIE.2009.2013748.
  • Shah, S. S. and Bhattacharya, S. (2017). Large & small signal modeling of dual active bridge converter using improved first harmonic approximation. In: Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition (APEC), 26–30 March 2017, Tampa, FL, USA: IEEE, pp. 1175–1182. doi: 10.1109/APEC.2017.7930844.
  • Shao, S., Chen, L., Shan, Z., Gao, F., Chen, H., Sha, D. and Dragičević, T. (2022). Modeling and Advanced Control of Dual-Active-Bridge DCDC Converters: A Review. IEEE Transactions on Power Electronics, 37(2), pp. 1524–1547. doi: 10.1109/TPEL.2021.3108157.
  • Singh, S., Fulwani, D. and Kumar, V. (2015). Robust Sliding-Mode Control of DC/DC Boost Converter Feeding a Constant Power Load. IET Power Electronics, 8(7), pp. 1230–1237. doi: 10.1049/IET-PEL.2014.0534.
  • Veeramraju, K. J. P., Cardoza, A., Sarangapani, J. and Kimball, J. W. (2022). Robust modifications to model reference adaptive control for reference voltage tracking in a dual active bridge DC-DC converter. In: 2022 IEEE Energy Conversion Congress and Exposition (ECCE), 09–13 October 2022, Detroit, MI, USA: IEEE. doi: 10.1109/ECCE50734.2022.9947779.
  • Wang, J. and Howe, D. (2008). A Power Shaping Stabilizing Control Strategy for DC Power Systems with Constant Power Loads. IEEE Transactions on Power Electronics, 23(6), pp. 2982–2989. doi: 10.1109/TPEL.2008.2004594.
  • Wu, J. and Lu, Y. (2019). Adaptive Backstepping Sliding Mode Control for Boost Converter With Constant Power Load. IEEE Access, 7, pp. 50797–50807. doi: 10.1109/ACCESS.2019.2910936.
  • Wu, M. and Lu, D. D. C. (2015). A Novel Stabilization Method of LC Input Filter with Constant Power Loads Without Load Performance Compromise in DC Microgrids. IEEE Transactions on Industrial Electronics, 62(7), pp. 4552–4562. doi: 10.1109/TIE.2014.2367005.
  • Yousefizadeh, S., Bendtsen, J. D., Vafamand, N., Khooban, M. H., Blaabjerg, F. and Dragičević, T. (2019). Tracking Control for a DC Microgrid Feeding Uncertain Loads in More Electric Aircraft: Adaptive Backstepping Approach. IEEE Transactions on Industrial Electronics, 66(7), pp. 5644–5652. doi: 10.1109/TIE.2018.2880666.
  • Zhang, Y., Wang, Y., Ni, K. and Hu, Y. (2020). Bidirectional DC–AC Converter-Based Communication Solution for Microgrid. Power Electronics and Drives, 5(1), pp. 177–188. doi: 10.2478/pead-2020-0013.
  • Zorgani, Y. A., Jouili, M., Koubaa, Y. and Boussak, M. (2019). A Very-Low-Speed Sensorless Control Induction Motor Drive with Online Rotor Resistance Tuning by Using MRAS Scheme. Power Electronics and Drives, 4(39), pp. 125–140. doi: 10.2478/pead2018-0021.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5319cf9e-f81d-4b60-8c5f-6fe0f7742245
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.