Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | R. 92, nr 5 | 9--12
Tytuł artykułu

Investigation of contact resistance influence on power cable joint temperature based on 3-d coupling model

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Badanie wpływu rezystancji styku połączenia kablowego na temperaturę za pomocą trójwymiarowego modelu sprzężonego
Języki publikacji
EN
Abstrakty
EN
Aiming at the overheating problem of cable joint, a 3-D finite element model of a single-core cable joint considering the coupling of electromagnetic field and temperature field has been built. In order to consider the heat losses generated by contact resistance of cable joint, the equivalent conductivity is calculated. The validity of the model and calculation method is verified by the comparison with analytical values.
PL
Do analizy zagadnienia przegrzania połączenia kablowego zbudowano trójwymiarowy model MES przy uwzględnieniu sprzężenia pola elektromagnetycznego i temperaturowego. W celu określenia strat ciepła wytwarzanego w rezystancji styku połączenia kablowego obliczono konduktywność zastępczą.
Wydawca

Rocznik
Strony
9--12
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
Twórcy
autor
  • East Inner Mongolia Electric Power Company Limited, Hohhot 010020, China
autor
  • State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044 China, chengpeng19870825@163.com
autor
  • East Inner Mongolia Electric Power Company Limited, Hohhot 010020, China
autor
  • East Inner Mongolia Electric Power Company Limited, Hohhot 010020, China
autor
  • State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044 China
autor
  • State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044 China
Bibliografia
  • [1] Yomna O, et al, Thermal modeling of medium voltage cable terminations under square pulses, IEEE Trans. Dielectr. Electr. Insul., vol. 21, no. 3, pp. 932-939, Jun. 2014.
  • [2] Rasmus Olsen, et al, Modelling of dynamic transmission cable temperature considering soil-specific heat, thermal resistivity, and precipitation, IEEE Trans. Power Del., vol. 28, no. 3, pp. 1909-1917, Jul. 2013.
  • [3] Ali Sedaghat, et al, Thermal analysis of power cables in free air: Evaluation and improvement of the IEC standard ampacity calculation, IEEE Trans. Power Del., vol. 29, no. 5, pp. 2306-2314, Oct. 2014
  • [4] James A, et al, Rating of cables in unfilled surface troughs, IEEE Trans. Power Del., vol. 27, no. 2, pp. 993-1001, Apr. 2012.
  • [5] Merkebu Z, et al, Comparison of air-gap thermal models for MV power cables inside unfilled conduit, IEEE Trans. Power Del., vol. 27, no. 3, pp. 1662-1669, Jul. 2012.
  • [6] George J, et al, Ampacity calculation for cables in shallow troughs, IEEE Trans. Power Del., vol. 25, no. 4, pp. 2064-2072, Oct. 2010.
  • [7] G. Gela, J. J. Dai, Calculation of thermal fields of underground cables using the boundary element method, IEEE Trans. Power Del., vol. 5, no. 3, pp. 1341-1347, Oct. 1988.
  • [8] GJ. Anders, et al, New approach to ampacity evaluation of cables in ducts using finite element technique, IEEE Trans. Power Del., vol. 2, no. 4, pp. 969-975, Oct. 1987.
  • [9] NgocKhoa Nguyen, et al, New approach of thermal field and ampacity of underground cables using adaptive hp- FEM, in Proc. IEEE PES 2010 General Meeting, pp. 1-5, April 19-22, New Orleans, LA, USA.
  • [10] M’hemed Rachek and Soraya Nati Larbi, Magnetic eddycurrent and thermal coupled models for the finite-element behavior analysis of underground power cables, IEEE Trans. Magn., vol. 44, no. 12, pp. 4739-4746, Dec. 2008.
  • [11] Li Ling, et al, Thermal field calculation and influencing parameters analysis of gas insulated busbars, Transactions of China Electrotechnical Society, vol. 27, no. 9, pp. 264-270, Sep, 2012.
  • [12] S.W.Kim, et al, Coupled Finite-element-Analytic Technique for Prediction of Temperature Rise in Power Apparatus, IEEE Trans. Magn., vol. 38, no. 2, pp. 921-924, Mar. 2002.
  • [13] Juan Carlos, et al, Influence of different types of magnetic shields on the thermal behavior and ampacity of underground power cables,” IEEE Trans. Power Del., vol. 26, no. 4, pp. 2659-2667, Oct. 2011.
  • [14] Y. Shiming, T. Wenquan, Heat transfer, Higher Education Press, Beijing, China, 2006 (In Chinese).
  • [15] Lin Shuyi, Xu Zhihong, Simulation and analysis on the threedimensional temperature field of AC solenoid valves, (in Chinese) Proce. CSEE, vol. 32, no. 36, pp. 156-164, Dec, 2012.
  • [16] Electric cables – Calculation of the current rating: Current rating equations (100% load factor) and calculation of losses – general, IEC Std. 60287-1-1, 2nd ed., 2006.
  • [17] Electric cables – Calculation of the current rating: Current rating equations (100% load factor) and calculation of losses – thermal resistance, IEC Std. 60287-2-1, 2nd ed., 2006.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na
działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-53039e96-2a4e-4e80-a297-39ac4a4dffad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.