Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | T. 14, nr 3 | 49--55
Tytuł artykułu

Mathematical model and structure of a neural network for detection of cyber attacks on information and communication systems

Treść / Zawartość
Warianty tytułu
PL
Model matematyczny i struktura sieci neuronowej do wykrywania cyberataków na systemy teleinformatyczne i komunikacyjne
Języki publikacji
EN
Abstrakty
EN
The paper discusses the principles of creating a mathematical model and system architecture by applying the method of artificial intelligence to detect cyberattacks on information and communication systems, where a neural network capable of learning and detecting cyberattacks is used. The proposed approach, based on the application of the developed mathematical model and architecture of artificial neural networks, as a detector of network attacks on information and communication systems, allows to increase the level of detection of network intrusions into computer systems, Web and Internet resources. An algorithm for processing network traffic parameters in real-time systems by structuring a neural network is proposed, which allows to optimize the redundancy of its multi-level structure at the level of inter-element connections.
PL
W artykule omówiono zasady tworzenia modelu matematycznego i architektury systemu poprzez zastosowanie metody sztucznej inteligencji do wykrywania cyberataków na systemy teleinformatyczne, gdzie wykorzystywana jest sieć neuronowa zdolna do uczenia się i wykrywania cyberataków. Proponowane podejście, oparte na zastosowaniu opracowanego modelu matematycznego i architektury sztucznych sieci neuronowych, jako detektora ataków sieciowych na systemy teleinformatyczne, pozwala na zwiększenie poziomu wykrywania włamań sieciowych do systemów komputerowych, zasobów sieciowych i internetowych. Zaproponowano algorytm przetwarzania parametrów ruchu sieciowego w systemach czasu rzeczywistego poprzez strukturyzację sieci neuronowej, co pozwala na optymalizację redundancji jej wielopoziomowej struktury na poziomie połączeń międzyelementowych.
Wydawca

Rocznik
Strony
49--55
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Vinnytsia National Technical University, Vinnytsia, Ukraine, I.zahoruiko@donnu.edu.ua
  • Vasyl‘ Stus Donetsk National University, Vinnytsia, Ukraine
  • Vinnytsia Institute of Trade and Economics of State University of Trade and Economics, Vinnytsia, Ukraine, s.merinova@vtei.edu.ua
  • Vinnytsia Mykhailo Kotsiubynskyi State Pedagogical University, Vinnytsia, Ukraine, shahovu2016@gmail.com
Bibliografia
  • [1] Andrushchenko M. et al.: Hand Movement Disorders Tracking By Smartphone Based On Computer Vision Methods. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska – IAPGOS 14(2), 2024, 5–10 [https://doi.org/10.35784/iapgos.6126].
  • [2] Avrunin O. et al.: Improving the methods for visualization of middle ear pathologies based on telemedicine services in remote treatment. IEEE KhPI Week on Advanced Technology – KhPI Week 2020, 347–350 [https://doi:10.1109/KhPIWeek51551.2020.9250090].
  • [3] Bezobrazov S. et al.: Artificial intelligence for sport activitity recognition. 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications – IDAACS 2019, V. 2, 628–632.
  • [4] Bisikalo O. et al.: Parameterization of the Stochastic Model for Evaluating Variable Small Data in the Shannon Entropy Basis. Entropy 25, 2023, 184 [https://doi.org/10.3390/e25020184].
  • [5] Dhangar K., Kulhare D., Khan A. A.: Proposed Intrusion Detection System. International Journal of Computer Applications 65(23), 2013, 46–50.
  • [6] Emelyanova Yu. G. et al.: Neural network technology for detecting network attacks on information resources. Software systems: theory and applications 3(7), 2011, 3–15.
  • [7] Haykin S.: Neural Networks and Learning Machines. Pearson Education, 2009.
  • [8] Kolodchak O. M.: Modern methods of detecting anomalies in intrusion detection systems. Bulletin of the Lviv Polytechnic National University. Series "Computer Systems and Networks" 745, 2012, 98–104.
  • [9] Korobiichuk I. et al.: Cyberattack classificator verification. Advanced Solutions in Diagnostics and Fault Tolerant Control, Springer International Publishing, 2018, 402–411.
  • [10] Lee J. et al.: Cyber Threat Detection Based on Artificial Neural Networks Using Event Profiles. IEEE Access 7, 2019, 165607–165626 [https://doi.org/10.1109/ACCESS.2019.2953095].
  • [11] Likhouzova T. A., Nosenko K. M., Pivtorak O. I.: Review of attack detection systems in network traffic. Adaptive automatic control systems 1(24), 2014, 67–75.
  • [12] Meleshko Ye.: Method of collaborative filtration based on associative networks of users similarity. Advanced information systems 2(4), 2018, 55–59.
  • [13] Naseer S., Saleem Y., Khalid S.: Enhanced network anomaly detection based on deep neural networks. IEEE Access 6, 2018, 48231–48246.
  • [14] Pakhomova V. M., Konnov M. S.: Research of two approaches to detect network attacks using neural network technologies. Science and Transport Progress 3(87), 2020, 81–93.
  • [15] Shestak Ya. et al.: Minimization of Information Losses in Data Centers as one of the Priority Areas of Information Security Technologies. IEEE 9th International Conference on Problems of Infocommunications, Science and Technology – PIC S&T, 2022, 227–230.
  • [16] Timchenko L. I. et al.: Approach to parallel-hierarchical network learning for real-time image sequences recognition, Proc. Machine Vision Systems for Inspection and Metrology VII, Boston (Massachusetts USA), 1999.
  • [17] Timchenko L. et al.: Q-processors for real-time image processing. Proc. SPIE 11581, 2020, 115810F.
  • [18] Turlykozhayeva D. et al.: Routing Algorithm for Software Defined Network Based on Boxcovering Algorithm. 10th International Conference on Wireless Networks and Mobile Communications – WINCOM, 2023.
  • [19] Turlykozhayeva D. et al.: Routing metric and protocol for wireless mesh network based on information entropy theory. Eurasian Physical Technical Journal 46, 2008, 90–98.
  • [20] Ulichev O. S. et al.: Computer modeling of dissemination of informational influences in social networks with different strategies of information distributors. Proc. SPIE 11176, 2019, 111761T.
  • [21] Wu Y., Wei D., Feng J.: Network Attacks Detection Methods Based on Deep Learning Techniques: A Survey, Wiley, Open Access, 2020 [https://doi.org/10.1155/2020/8872923].
  • [22] Zh Z. Z. et al.: Cluster router based on eccentricity, Eurasian Physical Technical Journal 19(3(41)), 2022, 84–90.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-52e5d3dd-2253-455f-8750-a99eb49b2fe9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.