Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 18, no 3 | 67--78
Tytuł artykułu

Experimental Energy Recovery from a Backpack Using Various Harvester Concepts

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Energy harvesting from human body kinetics is a crucial issue. The primary challenge lies in designing and optimizing the energy converter. This paper presents an analysis of energy harvesting using three variants of electromagnetic harvesters designed for backpack integration. The first harvester comprises a single levitating magnet within a coil. The second concept involves a specially designed oscillating magnet consisting of two divided magnets with a separator. The third harvester variant utilizes two levitating magnets within the coil. The results indicate that, for harmonic excitation, the harvested power is the highest for the classical harvester with a single oscillating magnet. However, when integrated into a backpack, the concept of two levitating magnets proves to be more effective in lower speed ranges.
Wydawca

Rocznik
Strony
67--78
Opis fizyczny
Bibliogr. 30 poz., fig., tab.
Twórcy
  • Department of Applied Mechanics, Lublin University of Technology, Nadbystrzycka 36, Lublin, Poland, k.kecik@pollub.pl
Bibliografia
  • 1.Qiu, J., Liu, X., Chen, H., Xu, X., Wen, Y., Li, P. A low-frequency resonant electromagnetic vibration energy harvester employing the halbach arrays for intelligent wireless sensor networks. IEEE Trans. Magn 2015; 51(11): 1–4. https://doi.org/10.1109/ TMAG.2015.2455041
  • 2. Saadon, S., Sidek, O. Environmental vibration-based mems piezoelectric energy harvester (EVMPEH). In: 2011 Developments in E-systems Engineer- ing. Dubai, United Arab Emirates 2011; 511–514. https://doi.org/10.1109/DeSE.2011.87
  • 3. Soares dos Santos, M.P., Ferreira, J.A.F., Ramos, A., Simoes, J.A.O., Morais, R., Silva, N.M., Santos, P.M., Reis, M.J.C.S., Oliveira, T. Instrumented hip implants: electric supply systems. J Biomech 2013; 46(15): 2561–2571. https://doi.org/10.1016/j. jbiomech.2013.08.002
  • 4. Rusinek, R., Kecik, K., Szymanski, M. Effect of magnet position in an electromagnetic transducer for the middle ear implant. J. Sound Vib. 2023; 559: 117766, https://doi.org/10.1016/j.jsv.2023.117766
  • 5. Ando, B., Baglio, S., Marletta, V., Bulsara, A.R. A wireless sensor node powered by nonlinear energy harvester. In: SENSORS, 2014 IEEE, Valencia, Spain 2014; 1583–1586, https://doi.org/10.1109/ ICSENS.2014.6985320
  • 6. Cepnik, C., Yeatman, E.M., Wallrabe, U. Effects of nonconstant coupling through nonlinear magnetics in electromagnetic vibration energy harvesters. J. Intell. Mater. Syst. Struct 2012; 23(13): 1533–1541. https://doi.org/10.1177/1045389X12440749
  • 7. Kecik, K., Mitura, A. Theoretical and experimental investigations of a pseudomagnetic levitation sys- tem for energy harvesting. Sensors (Basel) 2020; 20(6). https://doi.org/10.3390/s20061623
  • 8. Halim, M.A., Cho, H., Salauddin, M., Park, J.Y. A miniaturized electromagnetic vibration Energy harvester using flux-guided magnet stacks for human-bodyinduced motion. Sens. Actuators A: Phys 2016; 249: 23–31. https://doi.org/10.1016/j. sna.2016.08.008
  • 9. Costanzo, L., Lo Schiavo, A., Vitelli, M. Improving the electromagnetic vibration energy harvester performance by using a double coil structure. Appl. Sci. (Basel) 2022; 12(3): 1166. https://doi.org/10.3390/ app12031166
  • 10. Muscat, A., Bhattacharya, S., Zhu, Y. Electromagnetic vibrational energy harvesters: A review. Sensors (Basel) 2022; 22(15). https://doi.org/10.3390/ s22155555
  • 11. Kecik, K., Kapitaniak, M. Parametric analysis of magnetorheologically damped pendulum vibration absorber. Int. J. Struct. Stab. Dyn. 2014; 14(08): 1440015. https://doi.org/10.1142/ S021945541440015X
  • 12. Zou, Y., Bo, L., Li, Z. Recent progress in human body energy harvesting for smart bioelectronic system. Fundam Res. 2021; 1(3), 364–382. https://doi. org/10.1016/j.fmre.2021.05.002
  • 13. Xie, L., Li, X., Cai, S., Huang, L., Li, J. Increased energy harvesting from backpack to serve as selfsustainable power source via a tube-like harvester. Mech. Syst. Signal Process 2017; 96: 215–225. https://doi.org/10.1016/j.ymssp.2017.04.013
  • 14. Paulides, J.J.H., Jansen, J.W., Encica, L., Lomonova, E.A., Smit, M. Human powered small-scale generation system for a sustainable dance club. IEEE International Electric Machines and Drives Conference, Miami, FL, USA 2009; 439–444. https://doi. org/10.1109/IEMDC.2009.5075243
  • 15. Rocha, J.G., Goncalves, L.M., Rocha, P.F., Silva, M.P., Lanceros-Mendez, S. Energy harvesting from piezoelectric materials fully integrated in footwear. IEEE Trans Ind Electron. 2010; 57(3): 813–819. https://doi.org/10.1109/TIE.2009.2028360
  • 16. Zeng, P., Khaligh, A. A permanent-magnet linear motion driven kinetic energy harvester. IEEE Trans Ind Electron. 2013; 60(12): 5737–5746. https://doi.org/10.1109/TIE.2012.2229674
  • 17. Xie, L., Du, R.: Harvest human kinetic energy to power portable electronics. J. Mech. Sci. Technol. 2012; 26(7): 2005–2008. https://doi.org/10.1007/ s12206-012-0503-7
  • 18. Granstrom, J., Feenstra, J., Sodano, H.A., Farinholt, K. Energy harvesting from a backpack instrumented with piezoelectric shoulder straps. Smart Mater. Struct. 2007; 16(5): 1810. https://doi. org/10.1088/0964-1726/16/5/036
  • 19. Mostafavi, A., Zakerzadeh, M.R., Sadighi, A., Chalaki, M.A. An efficient design of an energy harvesting backpack for remote applications. Sustain. Energy Technol. Assess. 2022; 52: 102173 https://doi. org/10.1016/j.seta.2022.102173
  • 20. Huang, L., Wang, R., Yang, Z., Xie, L. Energy harvesting backpacks for human load carriage: Modelling and performance evaluation. Electronics 2020; 9(7): 1061 https://doi.org/10.3390/electronics9071061
  • 21. Liu, M., Qian, F., Mi, J., Zuo, L. Dynamic interaction of energy-harvesting backpack and the human body to improve walking comfort. Mech Syst Signal Process 2022; 174: 109101 https://doi. org/10.1016/j.ymssp.2022.109101
  • 22. Hou, Z., Liu, Q., Zhao, H., Xie, J., Cao, J., Liao, W.H., Bowen, C.R. Biomechanical modeling and experiments of energy harvesting backpacks. Mech Syst Signal Process 2023; 200: 110612. https://doi. org/10.1016/j.ymssp.2023.110612
  • 23. Wang, R., Huang, L., Yang, Z., Xie, L. The effects of energy harvesting backpack on the kinematics, kinetics, and muscle activity of human lower limbs. In: IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China 2022; 6: 781–786. https://doi. org/10.1109/ITOEC53115.2022.9734718
  • 24. Wu, H., Qian, S., Hou, X., Zhao, J., Zhang, J., Song, X., Liu, Y., Shi, S., Geng, W., Mu, J., He, J., Chou, X. A high-power and high-efficiency mini generator for scavenging energy from human foot movement. Sci. China Technol. Sci. 2023; 66: 3381–3392. https://doi.org/10.1007/s11431-023-2531-9
  • 25. Saravia, C.M., Ramirez, J.M., Gatti, C.D. A hybrid numerical-analytical approach for modeling levitation based vibration energy harvesters. Sens. Actuators A: Phys. 2017; 257: 20–29. https://doi. org/10.1016/j.sna.2017.01.023
  • 26. Kecik, K. Modification of electromechanical coupling in electromagnetic harvester. Energies (Basel) 2022; 15(11): 4007. https://doi.org/10.3390/en15114007
  • 27. Kecik, K., Stezycka, E. Nonlinear dynamics and energy harvesting of a two degrees-of-freedom electromagnetic energy harvester near the primary and secondary resonances. Appl. Sci. 2023; 13(13): 7613. https://doi.org/10.3390/app13137613
  • 28. Kecik, K. Modelling of electromechanical coupling effects in electromagnetic energy harvester. In: Dimitrovov´a, Z., Biswas, P., Gon¸calves, R., Silva, T. (eds.) Recent Trends in Wave Mechanics and Vibrations. Mechanisms and Machine Science. 2023; 125: 483–490. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-031-15758-5_49
  • 29. Stephen, N.G. On energy harvesting from ambient vibration. J. Sound Vib. 2006; 293(1): 409–425. https://doi.org/10.1016/j.jsv.2005.10.003
  • 30. Mosch, M., Fischerauer, G. A comparison of methods to measure the coupling coefficient of electromagnetic vibration energy harvesters. Micromachines (Basel) 2019; 10(12). https://doi. org/10.3390/mi10120826
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5295cc20-61b1-4034-b206-15960cc670c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.