Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 21, no. 1 | 89--111
Tytuł artykułu

Free vibration and buckling analyses of FG porous sandwich curved microbeams in thermal environment under magnetic field based on modified couple stress theory

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Porous sandwich structures include different numbers of layers and are capable of demonstrating higher values of strength to weight ratio in comparison with traditional sandwich structures. Free vibration and mechanical buckling responses of a three-layered curved microbeam was investigated under the Lorentz magnetic load in the current study. A viscoelastic substrate was considered and the effect of the thermal environment on its mechanical properties was assessed. The core was composed of the functionally graded porous materials whose properties changed across the thickness based on some given functions. The face sheets were FG-carbon nanotube-reinforced composites and the influence of the placement of CNTs was evaluated on the behavior of the faces. Using the extended rule of mixture, their effective properties were determined. Modified couple stress theory was used to predict the results in the micro-dimension. While the governing equations were derived based on the higher order shear deformation theory and energy method, and mathematically solved via Navier’s method. The results were validated with the previously published works, considering the effects of various parameters. As comprehensively explained in the results section, natural frequencies and critical buckling loads were reduced by enhancing the central opening angle. Moreover, an increase in the porosity coefficient declined the mentioned values, but increasing the CNTs content showed the opposite effect. The outcomes of this study may help in the design and manufacturing of various equipment using such smart structures, making high stiffness to weight ratios more accessible.
Wydawca

Rocznik
Strony
89--111
Opis fizyczny
Bibliogr. 76 poz., rys., wykr.
Twórcy
  • Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
  • Department of Mechanical Engineering, Qom Branch, Islamic Azad University, Qom, Iran
autor
  • Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran, samir@kashanu.ac.ir
  • Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
Bibliografia
  • [1] McEvoy MA, Correll N. Materials that couple sensing, actuation, computation, and communication. Sci (80) Am Assoc Adv Sci. 2015;347:1261689.
  • [2] Mohammadimehr M, Arshid E, Alhosseini SMAR, Amir S, Arani MRG. Free vibration analysis of thick cylindrical MEE composite shells reinforced CNTs with temperature-dependent properties resting on viscoelastic foundation. Struct Eng Mech. 2019;70:683–702.
  • [3] Iijima S. Helical microtubules of graphitic carbon. Nature. Nature Publishing Group; 1991;354:56.
  • [4] Ajayan PM, Zhou OZ. Applications of carbon nanotubes. Carbon nanotube. Berlin, Heidelberg: Springer, Berlin, Heidelberg; 2001. p. 391–425. http://link.springer.com/https://doi.org/10.1007/3-540-39947-X_14.
  • [5] Anumandla V, Gibson RF. A comprehensive closed form micro-mechanics model for estimating the elastic modulus of nanotube-reinforced composites. Compos Part A Appl Sci Manuf. Elsevier; 2006;37:2178–85. https://www.sciencedirect.com/science/article/pii/S1359835X05003830.
  • [6] Thostenson ET, Chou T-W. On the elastic properties of carbon nanotube-based composites: modelling and characterization. J Phys D Appl Phys. IOP Publishing; 2003;36:573.
  • [7] Alibeigloo A. Static analysis of functionally graded carbon nanotube-reinforced composite plate embedded in piezoelectric layers by using theory of elasticity. Compos Struct Elsevier. 2013;95:612–22.
  • [8] Duc ND, Cong PH, Tuan ND, Tran P, Thanh N Van. Thermal and mechanical stability of functionally graded carbon nanotubes (FG CNT)-reinforced composite truncated conical shells sur-rounded by the elastic foundations. Thin-Walled Struct. Elsevier; 2017;115:300–10. https://www.sciencedirect.com/science/article/pii/S0263823116307467.
  • [9] Shariati A, Ghabussi A, Habibi M, Safarpour H, Safarpour M, Tounsi A, et al. Extremely large oscillation and nonlinear frequency of a multi-scale hybrid disk resting on nonlinear elastic foundation. Thin-Walled Struct. Elsevier Ltd; 2020;154:106840.
  • [10] Khatua TP, Cheung YK. Bending and vibration of multilayer sandwich beams and plates. Int J Numer Methods Eng. 1973;6:11–24.
  • [11] Maheri MR, Adams RD. Steady-state flexural vibration damping of honeycomb sandwich beams. Compos Sci Technol Elsevier. 1994;52:333–47.
  • [12] Leclaire P, Horoshenkov KV, Cummings A. Transverse vibrations of a thin rectangular porous plate saturated by a fluid. J Sound Vib. 2001;247:1–18. http://linkinghub.elsevier.com/retrieve/pii/S0022460X01936569.
  • [13] Takahashi D, Tanaka M. Flexural vibration of perforated plates and porous elastic materials under acoustic loading. J Acoust Soc Am. Acoustical Society of America; 2002;112:1456–64. http://asa.scitation.org/doi/https://doi.org/10.1121/1.1497624.
  • [14] Chen D, Yang J, Kitipornchai S. Elastic buckling and static bend-ing of shear deformable functionally graded porous beam. Com-pos Struct. Elsevier; 2015;133:54–61. https://www.sciencedirect.com/science/article/pii/S0263822315005978.
  • [15] Guo Y, Zhang J. Shock absorbing characteristics and vibration transmissibility of honeycomb paperboard. Shock Vib. 2004;11:521–31.
  • [16] Ait AH, Tounsi A, Bernard F. Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations. Int J Mech Mater Des. Springer Netherlands; 2017;13:71–84. http://link.springer.com/https://doi.org/10.1007/s10999-015-9318-x.
  • [17] Chen D, Yang J, Kitipornchai S. Free and forced vibrations of shear deformable functionally graded porous beams. Int J Mech Sci. Elsevier; 2016;108–109:14–22. https://www.sciencedirect.com/science/article/pii/S002074031600031X.
  • [18] Katunin A. Vibration-based spatial damage identification in honeycomb-core sandwich composite structures using wavelet analysis. Compos Struct. 2014;118:385–91.
  • [19] Chen D, Yang J, Kitipornchai S. Nonlinear vibration and post-buckling of functionally graded graphene reinforced porous nano-composite beams. Compos Sci Technol. Elsevier; 2017;142:235–45. https://www.sciencedirect.com/science/article/abs/pii/S0266353816320383.
  • [20] Duc ND, Seung-Eock K, Tuan ND, Tran P, Khoa ND. New approach to study nonlinear dynamic response and vibration of sandwich composite cylindrical panels with auxetic honeycomb core layer. Aerosp Sci Technol. 2017;70:396–404.
  • [21] Amir S, Khorasani M, BabaAkbar-Zarei H. Buckling analysis of nanocomposite sandwich plates with piezoelectric face sheets based on flexoelectricity and first-order shear deformation theory. J Sandw Struct Mater. SAGE PublicationsSage UK: London, England; 2018;109963621879538. http://journals.sagepub.com/doi/https://doi.org/10.1177/1099636218795385.
  • [22] Amir S, BabaAkbar-Zarei H, Khorasani M. Flexoelectric vibration analysis of nanocomposite sandwich plates. Mech Based Des Struct Mach. Taylor & Francis; 2020;48:146–63. https://www.tandfonline.com/doi/full/https://doi.org/10.1080/15397734.2019.1624175.
  • [23] Piollet E, Fotsing ER, Ross A, Michon G. High damping and nonlinear vibration of sandwich beams with entangled cross-linked fibres as core material. Compos Part B Eng. 2019;168:353–66.
  • [24] Shariati A, Habibi M, Tounsi A, Safarpour H, Safa M. Application of exact continuum size-dependent theory for stability and frequency analysis of a curved cantilevered microtubule by considering viscoelastic properties. Eng Comput. Springer; 2020;1–20. https://link.springer.com/article/https://doi.org/10.1007/s00366-020-01024-9.
  • [25] Babaei H, Eslami MR, Khorshidvand AR. Thermal buckling and postbuckling responses of geometrically imperfect FG porous beams based on physical neutral plane. J Therm Stress. 2020;43:109–31.
  • [26] Kumar S, Renji K. Estimation of strains in composite honeycomb sandwich panels subjected to low frequency diffused acoustic field. J Sound Vib. 2019;449:84–97.
  • [27] Moayedi H, Habibi M, Safarpour H, Safarpour M, Foong LK. Buckling and frequency responses of a graphene nanoplatelet reinforced composite microdisk. Singapore: World Scientific Publishing Co. Pte Ltd; 2019. p. 11.
  • [28] Amir S, Arshid E, Ghorbanpour AMR. Size-dependent magneto-electro-elastic vibration analysis of FG saturated porous annular/circular micro sandwich plates embedded with nano-composite face sheets subjected to multi-physical pre loads. Smart Struct Syst. 2019;23:429–47. https://doi.org/10.12989/sss.2019.23.5.429.
  • [29] Eringen AC. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys AIP. 1983;54:4703–10.
  • [30] Eringen AC. Nonlocal continuum field theories. Berlin: Springer Science and Business Media; 2002.
  • [31] Amir S, Soleimani-Javid Z, Arshid E. Size-dependent free vibration of sandwich micro beam with porous core subjected to thermal load based on SSDBT. ZAMM Zeitschrift fur Angew Math und Mech. 2019;99:1–21.
  • [32] Amir S, Bidgoli EMR, Arshid E. Size-dependent vibration analysis of a three-layered porous rectangular nano plate with piezo-electromagnetic face sheets subjected to pre loads based on SSDT. Mech Adv Mater Struct. Taylor & Francis; 2020;27:605–19. https://www.tandfonline.com/doi/full/https://doi.org/10.1080/15376494.2018.1487612.
  • [33] Allahkarami F, Nikkhah-Bahrami M. The effects of agglomerated CNTs as reinforcement on the size-dependent vibration of embedded curved microbeams based on modified couple stress theory. Mech Adv Mater Struct. Taylor and Francis Inc.; 2018;25:995–1008.
  • [34] Alipour MM, Shariyat M. Nonlocal zigzag analytical solution for Laplacian hygrothermal stress analysis of annular sandwich macro/nanoplates with poor adhesions and 2D-FGM porous cores. Arch Civ Mech Eng. Elsevier B.V.; 2019;19:1211–34.
  • [35] Yi H, Sahmani S, Safaei B. On size-dependent large-amplitude free oscillations of FGPM nanoshells incorporating vibrational mode interactions. Arch Civ Mech Eng Springer. 2020;20:1–23.
  • [36] Safarpour H, Esmailpoor HZ, Habibi M. A size-dependent exact theory for thermal buckling, free and forced vibration analysis of temperature dependent FG multilayer GPLRC composite nano-structures restring on elastic foundation. Int J Mech Mater Des. Springer Netherlands; 2019;15:569–83. https://link.springer.com/article/https://doi.org/10.1007/s10999-018-9431-8.
  • [37] Esmailpoor HZ, Pourghader J, Hashemabadi D, Sharifi BF, Habibi M, Safarpour H. Multilayer GPLRC composite cylindrical nanoshell using modified strain gradient theory. Mech Based Des Struct Mach. Taylor and Francis Inc.; 2019;47:521–45.
  • [38] Sobhy M. Differential quadrature method for magneto-hygro-thermal bending of functionally graded graphene/Al sandwich-curved beams with honeycomb core via a new higher-order theory. J Sandw Struct Mater. 2020.
  • [39] Lei YL, Gao K, Wang X, Yang J. Dynamic behaviors of single- and multi-span functionally graded porous beams with flexible boundary constraints. Appl Math Model. 2020;83:754–76.
  • [40] Bidgoli MO, Arefi M, Loghman A. Thermoelastic behaviour of FGM rotating cylinder resting on friction bed subjected to a ther-mal gradient and an external torque. Aust J Mech Eng. Taylor and Francis Ltd.; 2018; https://www.tandfonline.com/doi/abs/https://doi.org/10.1080/14484846.2018.1552736.
  • [41] Mahani RB, Eyvazian A, Musharavati F, Sebaey TA, Talebizad-ehsardari P. Thermal buckling of laminated nano-composite conical shell reinforced with graphene platelets. Thin-Walled Struct. Elsevier Ltd; 2020;155:106913.
  • [42] Arshid E, Amir S, Loghman A. Bending and buckling behaviors of heterogeneous temperature-dependent micro annular/circular porous sandwich plates integrated by FGPEM nano-Composite layers. J Sandw Struct Mater. SAGE PublicationsSage UK: London, England; 2020;109963622095502. http://journals.sagepub.com/doi/https://doi.org/10.1177/1099636220955027.
  • [43] Bousahla AA, Bourada F, Mahmoud SR, Tounsi A, Algarni A, Adda Bedia EA, et al. Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory. Comput Concr Techno Press. 2020;25:155–66.
  • [44] Refrafi S, Bousahla AA, Bouhadra A, Menasria A, Bourada F, Tounsi A, et al. Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations. Comput Concr Techno Press. 2020;25:311–25.
  • [45] Chikr SC, Kaci A, Bousahla AA, Bourada F, Tounsi A, Bedia EA, et al. A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin’s approach. Geomech Eng Techno-Press. 2020;21:471–87.
  • [46] Dinh DN, Hong CP. Nonlinear thermo-mechanical dynamic analysis and vibration of higher order shear deformable piezoelectric functionally graded material sandwich plates resting on elastic foundations. J Sandw Struct Mater. SAGE PublicationsSage UK: London, England; 2018;20:191–218. http://journals.sagepub.com/doi/https://doi.org/10.1177/1099636216648488.
  • [47] Zenkour AM. A quasi-3D refined theory for functionally graded single-layered and sandwich plates with porosities. Compos Struct. Elsevier; 2018;201:38–48. https://www.sciencedirect.com/science/article/pii/S026382231831420X.
  • [48] Arshid E, Khorshidvand AR. Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method. Thin-Walled Struct Elsevier Ltd. 2018;125:220–33. https://doi.org/10.1016/j.tws.2018.01.007.
  • [49] Chen D, Yang J, Kitipornchai S. Buckling and bending analyses of a novel functionally graded porous plate using Chebyshev-Ritz method. Arch Civ Mech Eng. Elsevier; 2019;19:157–70. https://www.sciencedirect.com/science/article/pii/S1644966518301158.
  • [50] Zenkour AM, Aljadani MH. Porosity effect on thermal buckling behavior of actuated functionally graded piezoelectric nanoplates. Eur J Mech A/Solids. Elsevier Ltd; 2019;78:103835.
  • [51] Arshid E, Khorshidvand AR, Khorsandijou SM. The effect of porosity on free vibration of SPFG circular plates resting on visco-Pasternak elastic foundation based on CPT, FSDT and TSDT. Struct Eng Mech. 2019;70:97–112. http://dx.doi.org/https://doi.org/10.12989/sem.2019.70.1.097.
  • [52] Pourjabari A, Hajilak ZE, Mohammadi A, Habibi M, Safarpour H. Effect of Porosity on free and forced vibration characteristics of the GPL reinforcement composite nanostructures. Comput Math with Appl Elsevier Ltd. 2019;77:2608–26.
  • [53] Amir S, Arshid E, Rasti-Alhosseini SMA, Loghman A. Quasi-3D tangential shear deformation theory for size-dependent free vibration analysis of three-layered FG porous micro rectangular plate integrated by nano-composite faces in hygrothermal environment. J Therm Stress. Taylor & Francis; 2020;43:133–56. https://www.tandfonline.com/doi/full/https://doi.org/10.1080/01495739.2019.1660601.
  • [54] Ansari R, Torabi J, Shojaei MF. Buckling and vibration analysis of embedded functionally graded carbon nanotube-reinforced composite annular sector plates under thermal loading. Compos Part B Eng. Elsevier; 2017;109:197–213. https://www.sciencedirect.com/science/article/abs/pii/S1359836816313907.
  • [55] Ghorbanpour AA, Haghparast E, BabaAkbar ZH. Vibration characteristics of axially moving titanium-polymer nanocomposite faced sandwich plate under initial tension. Int J Eng Appl Sci. 2017;9:39–39. http://dergipark.gov.tr/doi/https://doi.org/10.24107/ijeas.303299.
  • [56] Ansari R, Torabi J, Hosein Shakouri A. Vibration analysis of functionally graded carbon nanotube-reinforced composite elliptical plates using a numerical strategy. Aerosp Sci Technol. Elsevier Masson; 2017;60:152–61. https://www.sciencedirect.com/science/article/pii/S1270963816303613.
  • [57] Liu YP, Reddy JN. A nonlocal curved beam model based on a modified couple stress theory. Int J Struct Stab Dyn. 2011;11:495–512.
  • [58] Simsek M, Reddy JN. Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory. Int J Eng Sci. 2013;64:37–53.
  • [59] Thai CH, Ferreira AJM, Phung-Van P. Size dependent free vibration analysis of multilayer functionally graded GPLRC micro-plates based on modified strain gradient theory. Compos Part B Eng Elsevier Ltd. 2019;169:174–88.
  • [60] Soleimani I, Beni YT. Vibration analysis of nanotubes based on two-node size dependent axisymmetric shell element. Arch Civ Mech Eng. Elsevier B.V.; 2018;18:1345–58.
  • [61] Arshid E, Amir S, Loghman A. Static and dynamic analyses of FG-GNPs reinforced porous nanocomposite annular micro-plates based on MSGT. Int J Mech Sci. Elsevier Ltd; 2020;180:105656. https://linkinghub.elsevier.com/retrieve/pii/S0020740320302678.
  • [62] Amir S, Arshid E, Khoddami MZ, Loghman A, Ghorbanpour AA. Vibration analysis of magnetorheological fluid circular sandwich plates with magnetostrictive facesheets exposed to monotonic magnetic field located on visco-Pasternak substrate. JVC/J Vib Control. 2020;26:1523–37. https://doi.org/10.1177/1077546319899203.
  • [63] Arshid E, Kiani A, Amir S. Magneto-electro-elastic vibration of moderately thick FG annular plates subjected to multi physical loads in thermal environment using GDQ method by considering neutral surface. Proc Inst Mech Eng Part L J Mater Des Appl. 2019;233:2140–59. https://doi.org/10.1177/1464420719832626.
  • [64] Zenkour AM, Radwan AF. Compressive study of functionally graded plates resting on Winkler–Pasternak foundations under various boundary conditions using hyperbolic shear deformation theory. Arch Civ Mech Eng. Elsevier B.V.; 2018;18:645–58.
  • [65] Mekerbi M, Benyoucef S, Mahmoudi A, Tounsi A, Bousahla AA, Mahmoud SR. Thermodynamic behavior of functionally graded sandwich plates resting on different elastic foundation and with various boundary conditions. J Sandw Struct Mater. SAGE Pub-licationsSage UK: London, England; 2019;109963621985128. http://journals.sagepub.com/doi/https://doi.org/10.1177/1099636219851281.
  • [66] Sahmani S, Aghdam MM. Imperfection sensitivity of the size-dependent postbuckling response of pressurized FGM nanoshells in thermal environments. Arch Civ Mech Eng. Elsevier B.V.; 2017;17:623–38.
  • [67] Behravan RA, Shariyat M. Thermo-magneto-elasticity analysis of variable thickness annular FGM plates with asymmetric shear and normal loads and non-uniform elastic foundations. Arch Civ Mech Eng. Elsevier B.V.; 2016;16:448–66.
  • [68] Rezvani SS, Kiasat MS. Analytical and experimental investigation on the free vibration of a floating composite sandwich plate having viscoelastic core. Arch Civ Mech Eng. Elsevier B.V.; 2018;18:1241–58.
  • [69] Ansari R, Gholami R, Sahmani S. Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory. Compos Struct Elsevier Ltd. 2011;94:221–8. https://doi.org/10.1016/j.compstruct.2011.06.024.
  • [70] Ma HM, Gao XL, Reddy JN. A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J Mech Phys Solids. 2008;56:3379–91.
  • [71] Zhang B, He Y, Liu D, Gan Z, Shen L. A novel size-dependent functionally graded curved mircobeam model based on the strain gradient elasticity theory. Compos Struct Elsevier. 2013;106:374–92.
  • [72] Allahkarami F, Nikkhah-bahrami M, Saryazdi MG. Magneto-thermo-mechanical dynamic buckling analysis of a FG-CNTs-reinforced curved microbeam with different boundary conditions using strain gradient theory. Int J Mech Mater Des. Springer Neth-erlands; 2018;14:243–61.
  • [73] Shen H-S. Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, Part I: axially-loaded shells. Compos Struct Elsevier. 2011;93:2096–108.
  • [74] Reddy JN. Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci. 2007;45:288–307.
  • [75] Aydogdu M. A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration. Phys E. Low-Dimens Syst Nanostruct Elsevier. 2009;41:1651–5. https://doi.org/10.1016/j.physe.2009.05.014.
  • [76] Eltaher MA, Emam SA, Mahmoud FF. Static and stability analysis of nonlocal functionally graded nanobeams. Compos Struct Elsevier Ltd. 2013;96:82–8. https://doi.org/10.1016/j.compstruct.2012.09.030.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-52821723-2fec-4483-a96d-214928007194
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.