Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | Vol. 47, nr 3 | 607--614
Tytuł artykułu

One can hear the area of a torus by hearing the eigenvalues of the polyharmonic operators

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper considers the asymptotic properties for the spectrum of a positive integer power l of the Laplace–Beltrami operator acting on an n-dimensional torus T. If N(λ) is the number of eigenvalues counted with multiplicity, smaller than a real positive number λ, we establish a Weyl-type asymptotic formula for the spectral problem of the polyharmonic operators on T, that is, as (…), where (…) is the volume of the unit ball in Rn and Vol T is the area of T, which gives the information of the area of the torus based on the spectrum of the polyharmonic operators.
Wydawca

Rocznik
Strony
607--614
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
  • School of Mathematics and Statistics, Minnan Normal University Zhangzhou, 363000, People's Republic of China, guoshunzi@yeah.net
  • School of Mathematics and Statistics, Hubei University, Wuhan, 430062, People's Republic of China
autor
  • School of Mathematics and Statistics, Hubei University, Wuhan, 430062, People's Republic of China
Bibliografia
  • [1] M. Ashbaugh, F. Gesztesy, M. Mitrea, G. Teschl, Spectral theory for perturbed Krein Laplacians in nonsmooth domains, Adv. Math. 223(4) (2010), 1372–1467.
  • [2] M. Berger, P. Gauduchon, E. Mazet, Le Spectre d’une variété Riemannienes, Lecture Notes in Math. 194, Spinger, Berlin, New York, 1974.
  • [3] M. Sh. Birman, M. Z. Solomyak, Asymptotic behavior of the spectrum of differential equations, Itogi Nauki i Tekhniki Matemat. Anal. 14 (1977), 5–58, (in Russian); Engl. transl.: J. Soviet Math. 12(3) (1979), 247–283.
  • [4] R. Brooks, Constructing isospectral manifolds, Amer. Math. Monthly 95(9) (1988), 823–839.
  • [5] I. Chavel, Eigenvalues in Riemannian Geometry, Academic Press, New York, 1984.
  • [6] C. Gordon, D. Webb, Isospectral convex domains in Euclidean space, Math. Res. Lett. 5(1) (1994), 539–545.
  • [7] C. Gordon, D. Webb, S. Wolpert, One cannot hear the shape of a drum, Bull. Amer. Math. Soc. 27(1) (1992), 134–138.
  • [8] C. Gordon, D. Webb, S. Wolpert, Isospectral plane domains and surfaces via Riemannian orbifolds, Invent. Math. 110(1) (1992), 1–22.
  • [9] M. Kac, Can one hear the shape of a drum?, Amer. Math. Monthly (Slaught Mem. Papers, no. 11) 73(4) (1966), 1–23.
  • [10] G. Q. Liu, Some inequalities for eigenvalues on Riemannian manifold and asymptotic formulas, J. Math. Anal. Appl. 376(1) (2011), 349–364.
  • [11] G. Q. Liu, The Weyl-type asymptotic formula for biharmonic Steklov eigenvalues on Riemannian manifolds, Adv. Math. 228(4) (2011), 2162–2217.
  • [12] H. P. McKean, I. M. Singer, Curvature and the eigenvalues of the Laplacian, J. Differential Geom. 1(1) (1967), 43–69.
  • [13] J. Milnor, Eigenvalues of the Laplace operator on certain manifolds, Proc. Nat. Acad. Sci. U.S.A. 51 (1964), 542.
  • [14] Å. Pleijel, On the eigenvalues and eigenfunctions of elastic plates, Comm. Pure Appl. Math. 3(1) (1950), 1–10.
  • [15] T. Sunada, Riemannian coverings and isospectral manifolds, Ann. of Math. (2) 121 (1985), 169–186.
  • [16] H. Urakawa, Bounded domains which are isospectral but not congruent, Ann. Sci. École Norm. Sup. (4) 15(3) (1982), 441–456.
  • [17] H. Weyl, Über die asymptotische Verteilung der Eigenwerte, Nachr. Konigl. Ges. Wiss. Göttingen, (1911), 110–117.
  • [18] H. Weyl, Der asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen, Math. Ann. 71(4) (1912), 441–469.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-524d6d6a-8c1d-4849-8013-6b0563e08601
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.