Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2022 | Vol. 70, no 6 | 2733--2746
Tytuł artykułu

A new elastic least-squares reverse time-migration method based on the new gradient equations

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Compared with single-component seismic data, multicomponent seismic data contain more P- and S-wave information. Making full use of multicomponent seismic data can improve the accuracy of seismic exploration. Elastic reverse-time migration (ERTM) is the most advanced migration technology for imaging multicomponent seismic data from complex subsurface structures. However, most conventional ERTM methods often use the adjoint operator of forward operator for approximation to the inverse operator. When the multicomponent seismic data suffer from a finite recording aperture, limited bandwidth, and imperfect illumination, the image quality of conventional ERTM is greatly reduced. In this study, we propose an elastic least-squares reverse-time migration (ELSRTM) scheme to improve the image quality of ERTM through multiple iterations. We first review the ERTM method; then, we derive the Born modeling equations, adjoint wave equations, and gradient equations of P- and S-wave images of ELSRTM. The new gradient equations, which use the time derivative of stress to replace the spatial derivative of particle velocity for improving the accuracy of gradients near the boundary, are also proposed. We compare the performance of ERTM with ELSRTM via synthetic experiments in numerical examples. Synthetic examples reveal that ELSRTM can generate high-quality images with higher resolution, fewer artifacts, and more balanced amplitude than ERTM.
Wydawca

Czasopismo
Rocznik
Strony
2733--2746
Opis fizyczny
Bibliogr. 53 poz.
Twórcy
autor
  • Hubei Subsurface Multi-Scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China, zhongyu26happy@163.com
  • First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China, yangting.lau@gmail.com
autor
  • Hubei Subsurface Multi-Scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China, hmgu@cug.edu.cn
  • Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
autor
  • Key Laboratory of Exploration Technologies for Oil and Gas Resources (Yangtze University), Cooperative Innovation Center of Unconventional Oil and Gas (Ministry of Education & Hubei Province), Yangtze University, Wuhan 430100, China, maoqinghuijz@126.com
Bibliografia
  • 1. Baysal E, Kosloff D, Sherwood J (1983) Reverse time migration: geophysics 48:1514–1524
  • 2. Caldwell J (1999) Marine multicomponent seismology. Lead Edge 18(11):1274–1282
  • 3. Claerbout JF (1971) Toward a unified theory of reflector mapping. Geophysics 36:467–481
  • 4. Claerbout JF (1992) Earth soundings analysis: processing versus inversion. Black-well Scientific
  • 5. Dai W, Schuster GT (2013) Plane-wave least-squares reverse-time migration. Geophysics 78(4):S165–S177
  • 6. Dellinger J, Etgen J (1990) Wave-field separation in two-dimensional anisotropic media. Geophysics 55:914–919
  • 7. Dong S, Cai J, Guo M, Suh S, Zhang Z, Wang B, and Li Z (2012), Least-squares reverse time migration towards true amplitude imaging and improving the resolution: 82th Annual International Meeting, SEG, Expanded Abstracts, 1–5
  • 8. Du QZ, Zhu Y, Ba J (2012) Polarity reversal correction for elastic reverse time migration. Geophysics 77(2):S31–S41
  • 9. Du QZ, Guo CF, Zhao Q, Gong XF, Wang CX, Li XY (2017) Vector-based elastic reverse time migration based on scalar imaging condition. Geophysics 82(2):S111–S127
  • 10. Fang X, Niu F, Wu D (2018) Least-squares reverse-time migration enhanced with the inverse scattering imaging condition. Chin J Geophys 61(9):3770–3782
  • 11. Gazdag J (1978) Wave equation migration with the phase-shift method. Geophysics 43:1342–1351
  • 12. Hill NR (1990) Gaussian beam migration. Geophysics 55:1416–1428
  • 13. Liu Q, Tromp J (2006) Finite-frequency kernels base on adjoint methods. Bull Seismol Soc Am 96:2383–2397
  • 14. McMechan GA (1983) Migration by extrapolation of time-dependent boundary values. Geophys Prospect 31:413–420
  • 15. Nemeth T, Wu C, Schuster GT (1999) Least-squares migration of incomplete reflection data. Geophysics 64:208–221
  • 16. Nguyen BD, McMechan GA (2015) Five ways to avoid storing source wavefield snapshots in 2D elastic prestack reverse time migration. Geophysics 80(1):S1–S18
  • 17. Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Springer
  • 18. Schneider WA (1978) Integral formulation for migration in two and three dimensions. Geophysics 43:49–76
  • 19. Shipp RM, Singh SC (2002) Two-dimensional full wavefield inversion of wide-aperture marine seismic streamer data. Geophys J Int 151(2):325–344
  • 20. Solano CA, Stopin A, Plessix R-E (2013) Synthetic study of elastic effects on acoustic full waveform inversion: 75th Annual International Meeting EAGE, Extended Abstracts, Th P10 10
  • 21. Sun R, McMechan GA (2001) Scalar reverse-time depth migration of prestack elastic seismic data. Geophysics 66:1519–1527
  • 22. Sun M, Dong L, Yang J, Huang C, Liu Y (2018) Elastic least-squares reverse time migration with density variations. Geo-physics 83:S533–S547
  • 23. Tan S, Huang LJ (2014) Least-squares reverse-time migration with a wavefield separation imaging condition and updated source wavefields. Geophysics 79(5):S195–S205
  • 24. Tarantola A (1984) Linearized inversion of seismic reflection data. Geophys Prospect 32:998–1015
  • 25. Virieux J (1984) SH-wave propagation in heterogeneous media: Velocity-stress finite-difference method. Geophysics 49:1933–1957
  • 26. Wang WL, McMechan GA (2015) Vector-Based Elastic Reverse Time Migration: Geophysics 80(6):S245–S258
  • 27. Wang BL, Gao JH, Chen WC, Zhang HL (2012) Efficient boundary storage strategies for seismic reverse time migration. Chin J Geophys 55:2412–2421 ((in Chinese))
  • 28. Whitmore ND (1983), Iterative depth migration by backward time propagation: 53th Annual International Meeting, SEG, Expanded Abstracts, 382–385
  • 29. Wu RS, Aki K (1985) Scattering characteristics of elastic waves by an elastic heterogeneity. Geophysics 50:582–595
  • 30. Wu D, Yao G, Cao J, Wang Y (2016) Least-squares RTM with L1 norm regularization. J Geophys Eng 13(5):666–673
  • 31. Wu D, Wang Y, Cao J, da Silva NV, Yao G (2021) Least-squares reverse-time migration with sparsity constraints. J Geophys Eng 18(2):304–316
  • 32. Wu B, Yao G, Cao J-J, Wu D, Li X, Liu N-C (2022) Huber inversion-based reverse-time migration with de-primary imaging condition and curvelet-domain sparse constraint. Petroleum Sci. https://doi.org/10.1016/j.petsci.2022.03.004
  • 33. Xie XB, Wu RS (2005) Multicomponent prestack depth migration using the elastic screen method. Geophysics 70(1):S30–S37
  • 34. Yan J, Sava P (2008) Isotropic angle-domain elastic reverse-time migration. Geophysics 73(6):S229–S239
  • 35. Yan R, Xie XB (2012) An angle-domain imaging condition for elastic reverse time migration and its application to angle gather extraction. Geophysics 77(5):S105–S115
  • 36. Yao G, Jakubowicz H (2016) Least-squares reverse-time migration in a matrix-based formulation. Geophys Prospect 64(3):611–621
  • 37. Yao G, Wu D (2015) Least-squares reverse-time migration for reflectivity imaging. Sci China Earth Sci 58(11):1982–1992
  • 38. Yao G, Wu B, da Silva NV, Debens HA, Wu D, Cao J (2022) Least-squares reverse-time migration with a multiplicative Cauchy constraint. Geophysics. https://doi.org/10.1190/geo2021-0183.1
  • 39. Youn O, Zhou HW (2001) Depth imaging with multiples. Geophysics 66:246–255
  • 40. Zeng C, Dong SQ, Wang B (2014) Least-squares reverse time migration: inversion-based imaging toward true reflectivity. Lead Edge 33:962–968
  • 41. Zhang Y, Zhang GQ, Bleistein N (2005) Theory of true-amplitude one way wave equations and true-amplitude common-shot migration. Geophysics 70(4):E1–E10
  • 42. Zhang Y, Duan L, Xie Y (2015) A stable and practical implementation of least-squares reverse time migration. Geophysics 80(1):V23–V31
  • 43. Zhang, Q., and G.A. McMechan, 2010, 2D and 3D elastic wavefield vector decomposition in the wavenumber domain for VTI media: Geophysics,75, no. 3, D13–D26.
  • 44. Zhang, Y. and J. Sun, 2009, Practical issues of reverse time migration: true amplitude gathers, noise removal and harmonic-source encoding: First Break, 26, 29–35.
  • 45. Zhang J, Tian Z, and Wang C (2007), P- and S-wave separated elastic wave equation numerical modeling using 2D staggered-grid: 77th Annual International Meeting, SEG, Expanded Abstracts, 2104–2109
  • 46. Zhao Y, Niu FL, Fu L et al (2021) Local events-based fast RTM surface-offset gathers via dip-guided interpolation: Pet. Sci 18:773–782
  • 47. Zhong Y, Liu YT (2018) Some improvement strategies for the time-domain dual-sensor full waveform inversion. Arab J Geosci 11:1–11
  • 48. Zhong Y, Liu YT (2019) Time-domain acoustic full-waveform inversion based on dual-sensor seismic acquisition system. J Seism Explor 28:103–120
  • 49. Zhong Y, Liu YT, Luo X (2019) Elastic reverse time migration in VTI media based on the acoustic wave equations. J Appl Geophys 168:128–138
  • 50. Zhong Y, Gu HM, Liu YT, Mao QH (2021) Elastic Reverse-Time Migration with Complex Topography. Energies 14:7837
  • 51. Zhong Y, Gu HM, Liu YT, Mao QH (2021b) Elastic least-squares reverse time migration based on decoupled wave equations. Geophysics 80(6):S371–S386
  • 52. Zhong Y, Gu HM, Liu YT, Mao QH (2022) A new joint reverse time migration method to improve vertical seismic profile image quality. J Petrol Sci Eng 214:110546
  • 53. Zou Q, Huang J-P, Yong P, Li Z-C (2020) 3D elastic waveform modeling with an optimized equivalent staggered-grid finite-difference method: Pet. Sci 17(4):967–989
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-51d5bb18-751c-4b1a-ae44-f8cbd516b482
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.