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ABSTRACT 

Using measured radial velocity data of four double-lined spectroscopic binary systems 

CS22964-161, LV Her, RW Lac and HD 34700, we find corresponding orbital and spectroscopic 

elements via a Probabilistic Neural Network (PNN). Our numerical results are in good agreement with 

those obtained by others using more traditional methods. 
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1.  INTRODUCTION 
 

Analysis of both light and radial velocity (hereafter VR) curves of binary systems helps 

us to determine the masses and radii of individual stars. One historically well-known method 

to analyze the VR curve is that of Lehmann-Filhés [1]. Some other methods were also 

introduced by Sterne [2] and Petrie [3]. The different methods of the VR curve analysis have 

been reviewed in ample detail by Karami & Teimoorinia [4]. Karami & Teimoorinia [4] also 

proposed a new non-linear least squares velocity curve analysis technique for spectroscopic 

binary stars. They showed the validity of their new method to a wide range of different types 

of binary See Karami & Mohebi [5-7] and Karami et al. [8].  

     Artificial Neural Networks have become a popular tool in almost every field of 

science. In recent years, ANNs have been widely used in astronomy for applications such as 

star/galaxy discrimination, morphological classification of galaxies, and spectral classification 

of stars (see Bazarghan et al. [9] and references therein). Following Bazarghan et al. [9], we 

employ Probabilistic Neural Networks (PNNs). This network has been investigated in ample 

details by Bazarghan et al. [9]. Probabilistic Neural Network (PNN) is a new tool to derive the 

orbital parameters of the spectroscopic binary stars. 

     In the present paper we use a Probabilistic Neural Network (PNN) to find the 

optimum match to the four parameters of the VR curves of the four double-lined spectroscopic 

binary systems CS22964-161, LV Her, RW Lac and HD 34700. Our aim is to show the 

validity of our new method to a wide range of different types of binary. 
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CS 22964-161 is a double-lined spectroscopic binary that both components are near the 

metal-poor main-sequence turn off and the spectral types of the stars are not too dissimilar 

and the orbital period is P = 252.481 days [10]. LV Her is a double-lined eclipsing binary and 

consists of primary and secondary components which has the highest eccentricity. The 

spectral type of systems is F9 V and the orbital period is P = 18.4359535 days [11]. RW Lac 

is a detached, eccentric, EA-type, double-lined eclipsing binary and consists of the hotter, 

larger, more massive, and more luminous photometric primary and the cooler, smaller, less 

massive, and less luminous photometric secondary components. The spectral type is G5 and 

G7 for the primary and the secondary stars and the orbital period is P = 10.3692046 days [12]. 

The young star HD 34700 is a double-lined spectroscopic binary and the components are of 

very nearly equal mass, temperature, luminosity and similar spectral type: G0 and the orbital 

period is P = 23.4877 days [13].  

This paper is organized as follows. In Sect. 2, we introduce a Probabilistic Neural 

Network (PNN) to estimate the four parameters of the VR curve. In Sect. 3, the numerical 

results are reported, while the conclusions are given in Sect. 4.  

 

 

2.  VR CURVE PARAMETERS ESTIMATION BY THE PROBABILISTIC NEURAL 

     NETWORK (PNN) 
 

Following Smart [14], the VR of a star in a binary system is defined as follows 

 

 RV K[cos( ) ecos ]                 (1) 

where   is the VR of the center of mass of system with respect to the sun. Also K is the 

amplitude of the VR of the star with respect to the center of mass of the binary. Furthermore 

,   and e  are the angular polar coordinate (true anomaly), the longitude of periastron and 

the eccentricity, respectively. 

Here we apply the PNN method to estimate the four orbital parameters, γ, K, e and ω of 

the VR curve in Eq. (1). In this work, for the identification of the observational VR curves, the 

input vector is the fitted VR curve of a star. The PNN is first trained to classify VR curves 

corresponding to all the possible combinations of γ, K, e and ω. For this one can synthetically 

generate VR curves given by Eq. (1) for each combination of the parameters: 

• 100 100       in steps of 1; 

• 1 K 300         in steps of 1; 

• 0 e 1               in steps of 0.001; 

• 0 360         in steps of 5. 

 

This gives a very big set of k pattern groups, where k denotes the number of different 

VR classes, one class for each combination of γ, K, e and ω. Since this very big number of 

different VR classes leads to some computational limitations, hence one can first start with the 

big step sizes. Note that from Petrie [3], one can guess γ, K, e from a VR curve. This enable 

one to limit the range of parameters around their initial guesses. When the preliminary orbit 

was derived after several stages, then one can use the above small step sizes to obtain the final 
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orbit. The PNN has four layers including input, pattern, summation, and output layers, 

respectively (see Fig. 5 in Bazarghan et al. [9]). When an input vector is presented, the pattern 

layer computes distances from the input vector to the training input vectors and produces a 

vector whose elements indicate how close the input is to a training input.  

The summation layer sums these contributions for each class of inputs to produce as its 

net output a vector of probabilities. Finally, a competitive transfer function on the output layer 

picks the maximum of these probabilities, and produces a 1 for that class and a 0 for the other 

classes [15,16]. Thus, the PNN classifies the input vector into a specific k class labeled by the 

four parameters γ, K, e and ω because that class has the maximum probability of being 

correct. 

 

 

3.  NUMERICAL RESULTS 

 

Here, we use the PNN to derive the orbital elements for the four different double-lined 

spectroscopic systems CS22964-161, LV Her, RW Lac and HD 34700. Using measured VR 

data of the two components of these systems obtained by Thompson et al. [10] for CS22964-

161, Torres et al. [11] for LV Her, Sandberg Lacy et al. [12] for RW Lac, Torres [13] for HD 

34700, the fitted velocity curves are plotted in terms of the phase in Figs. 1 to 4.  

    The orbital parameters obtaining from the PNN for CS22964-161, LV Her, RW Lac and 

HD 34700 are tabulated in Tables 1, 3, 5 and 7, respectively. Tables show that the results are 

in good accordance with the those obtained by Thompson et al. [10] for CS22964-161, Torres 

et al. [11] for LV Her, Sandberg Lacy et al. [12] for RW Lac, Torres [13] for HD 34700. 

Note that the Gaussian errors of the orbital parameters in Tables 1, 3, 5 and 7 are the 

same selected steps for generating VR curves, i.e. 1, K 1, e 0.001       and 5 . These are 

close to the observational errors reported in the literature. Regarding the estimated errors, 

following Specht [16] , the error of the decision boundaries depends on the accuracy with 

which the underlying Probability Density Functions (PDFs) are estimated. Parzen [17] proved 

that the expected error gets smaller as the estimate is based on a large data set.  

This definition of consistency is particularly important since it means that the true 

distribution will be approached in a smooth manner. Specht [16] showed that a very large 

value of the smoothing parameter would cause the estimated errors to be Gaussian regardless 

of the true underlying distribution and the misclassification rate is stable and does not change 

dramatically with small changes in the smoothing parameter.  

The combined spectroscopic elements including 
3

pm sin i , 3

sm sin i ,
3

p s(m m )sin i , 

p s(a a )sini  and  
s

p

m

m
are calculated by substituting the estimated parameters K, e and ω in to 

Eqs. (3), (15) and (16) in Karami and Teimoorinia [4].  

The results obtained for the four systems are tabulated in Tables 2, 4, 6 and 8 show that 

our results are in good agreement with the those obtained by Thompson et al. [10] for 

CS22964-161, Torres et al. [11] for LV Her, Sandberg Lacy et al. [12] for RW Lac, Torres 

[13] for HD 34700, respectively.  

Here the errors of the combined spectroscopic elements in Tables 2, 4, 6 and 8 are 

obtained by the help of orbital parameters errors. See again Eqs. (3), (15) and (16) in Karami 

and Teimoorinia [4]. 
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Fig. 1. Radial velocities of the primary and secondary components of CS22964-161plotted against the 

phase. The observational data have been measured by Thompson et al. [10]. 

 

 

 

Fig. 2. Radial velocities of the primary and secondary components of LV Her plotted against the 

phase. The observational data have been measured by Torres et al. [11]. 
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Fig. 3. Radial velocities of the primary and secondary components of RW Lac plotted against the 

phase. The observational data have been measured by Sandberg Lacy et al. [12]. 

 

Fig. 4. Radial velocities of the primary and secondary components of HD 34700 plotted against the 

phase. The observational data have been measured by Torres [13]. 
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Table 1. Orbital parameters of CS22964-161. 

 

 

Table 2. Combined spectroscopic elements of CS22964-161. 

  

 

Table 3. Orbital parameters of LV Her. 
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Table 4. Combined spectroscopic elements of LV Her.  

 

 

 

Table 5. Orbital parameters of RW Lac. 

 

 

Table 6. Combined spectroscopic elements of RW Lac.  
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Table 7. Orbital parameters of HD 34700. 

 

 
 

Table 8. Combined spectroscopic elements of HD 34700. 
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4.  CONCLUSIONS 
 

A Probabilistic Neural Network to derive the orbital elements of spectroscopic binary 

stars was applied. PNNs are used in both regression (including parameter estimation) and 

classification problems. However, one can discretize a continuous regression problem to such 

a degree that it can be represented as a classification problem [15,16], as we did in this work. 

Using the measured VR data of CS22964-161, LV Her, RW Lac and HD 34700 obtained 

by Thompson et al. [10], Torres et al. [11], Sandberg Lacy et al. [12] and Torres [13], 

respectively, we find the orbital elements of these systems by the PNN. Our numerical results 

shows that the results obtained for the orbital and spectroscopic parameters are in good 

agreement with those obtained by others using more traditional methods.  

This method is applicable to orbits of all eccentricities and inclination angles. In this 

method the time consumed is considerably less than the method of Lehmann-Filhés. It is also 

more accurate as the orbital elements are deduced from all points of the velocity curve instead 

of four in the method of Lehmann-Filhés. The present method enables one to vary all of the 

unknown parameters γ, K, e and ω simultaneously instead of one or two of them at a time. It 

is possible to make adjustments in the elements before the final result is obtained. There are 

some cases, for which the geometrical methods are inapplicable, and in these cases the present 

one may be found useful. One such case would occur when observations are incomplete 

because certain phases could have not been observed. Another case in which this method is 

useful is that of a star attended by two dark companions with commensurable periods. In this 

case the resultant velocity curve may have several unequal maxima and the geometrical 

methods fail altogether. 
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