Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 12, no. 3 | 123--132
Tytuł artykułu

Shortening and dispersion of single-walled carbon nanotubes upon interaction with mixed supramolecular compounds

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Congo red (CR) dye molecules self-associate in water solutions creating ribbon-like supramolecular structures that can bind various aromatic compounds by intercalation, forming mixed supramolecular systems. Mixed supramolecular systems, such as CR-doxorubicin and CREvans blue, interact with the surface of carbon nanotubes, leading to their stiffening and ultimately to their breaking and shortening. This work presents a simple method of obtaining short and straight carbon nanotubes with significantly better dispersion in aqueous solutions and consequently improved usability in biological systems.
Wydawca

Rocznik
Strony
123--132
Opis fizyczny
Bibliogr. 31 poz., rys., wykr., zdj.
Twórcy
autor
  • Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
  • Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
  • Institute of Catalysis and Surface Chemistry, Polish Academy of Science, Kraków, Poland
autor
  • Institute of Catalysis and Surface Chemistry, Polish Academy of Science, Kraków, Poland
Bibliografia
  • 1. Król M, Roterman I, Piekarska B, Konieczny L, Rybarska J, Stopa B, et al. An approach to understand the complexation of supramolecular dye Congo red with immunoglobulin L chain λ. Biopolymers 2005;77:155–62.
  • 2. Stopa B, Piekarska B, Konieczny L, Rybarska J, Spólnik P, Zemanek G, et al. The structure and protein binding of amyloidspecific dye reagents. Acta Biochim Pol 2003;50:1213–27.
  • 3. Hu Ch, Chen Z, Shen A, Shen X, Li J, Hu S. Water-soluble singlewalled carbon nanotubes via noncovalent functionalization by a rigid, planar and conjugated diazo dye. Carbon 2006;44:428–34.
  • 4. Szlachta M, Wójtowicz P. Adsorption of methylene blue and Congo red from aqueous solution by activated carbon and carbon nanotubes. Water Sci Technol 2013;68:2240–8.
  • 5. Chatterjee S, Chatterjee T, Lim S-R, Woo SH. Effect of the addition mode of carbon nanotubes for the production of chitosan. Bioresour Technol 2011;102:4402–9.
  • 6. Skowronek M, Stopa B, Konieczny L, Rybarska J, Piekarska B, Szneler E, et al. Self-assembly of Congo Red – a theoretical and experimental approach to identify its supramolecular organization in water and salt solutions. Biopolymers 1998;46:267–81.
  • 7. Roterman I, No KT, Piekarska B, Kaszuba J, Pawlicki R, Rybarska J, et al. Bis azo dyes – studies on the mechanism of complex formation with IgG modulated by heating or antigen binding. J Physiol Pharmacol 1993;44:213–32.
  • 8. Spólnik P, Król M, Stopa B, Konieczny L, Piekarska B, Rybarska J, et al. Influence of the electric field on supramolecular structure and properties of amyloid-specific reagent Congo red. Eur Biophys J 2011;40:1187–96.
  • 9. Stopa B, Górny M, Konieczny L, Piekarska B, Rybarska J, Skowronek M, et al. Supramolecular ligands: monomer structure and protein ligation capability. Biochimie 1998;80:963–8.
  • 10. Frid P, Anisimov SV, Popovic N. Congo red and protein aggregation in neurodegenerative diseases. Brain Res Rev 2007;53:135–60.
  • 11. Rudyk H, Knaggs MH, Vasiljevic S, Hope J, Birkett C, Gilbert IH. Synthesis and evaluation of analogues of Congo red as potential compounds against transmissible spongiform encephalopathies. Eur J Med Chem 2003;38:567–79.
  • 12. Crooke AC, Morris CJ. The determination of plasma volume by the Evans blue method. J Physiol 1942;101:217–23.
  • 13. Wallace JE. Diagnosis of amyloid disease by the intravenous injection of Congo-red. Lancet 1932;219:391–3.
  • 14. Rybarska J, Piekarska B, Stopa B, Spólnik P, Zemanek G, Konieczny L, et al. In vivo accumulation of self-assembling dye Congo red in an area marked by specific immune complexes: possible relevance to chemotherapy. Fol Histochem Cytobiol 2004;42:101–10.
  • 15. Rybarska J, Piekarska B, Stopa B, Zemanek G, Konieczny L, Nowak M, et al. Evidence that supramolecular Congo red is the sole ligation form of this dye for L chain λ derived amyloid proteins. Fol Histochem Cytobiol 2001;39:307–14.
  • 16. Konieczny L, Piekarska B, Rybarska J, Stopa B, Krzykwa B, Noworolski J, et al. Bis azo dye liquid crystalline micelles as possible drug carriers in immunotargeting technique. J Physiol Pharmacol 1994;45:441–54.
  • 17. Stopa B, Piekarska B, Jagusiak A, Kusior D, Zemanek G, Konieczny L, et al. Supramolecular Congo red as a potential drug carrier. Properties of Congo red-doxorubicin complexes. Acta Biochim Pol 2011;58:282, abstract P282.
  • 18. Pastorin G. Carbon nanotubes: from bench chemistry to promising biomedical applications. Singapore: Pan Stanford Publishing, 2011.
  • 19. Liu Z, Sun X, Nakayama-Ratchford N, Dai HJ. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ASC Nano 2007;1:50–6.
  • 20. Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of carbon nanotubes. Chem Rev 2006;106:1105–36.
  • 21. Kostarelos K, Lacerda L, Pastorin G, Wu W, Więckowski S, Luangsivilay J, et al. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol 2007;2:108–13.
  • 22. Kam NW, Jessop TC, Wender PA, Dai HJ. Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc 2004;126:6850–1.
  • 23. Quaresi SR, Sahni YP, Singh SK, Bhat MA, Dar AA, Quadri SA. Nanotechnology based drug delivery system. J Pharm Res Opin 2011;1:161–5.
  • 24. Pantarotto D, Briand JP, Prato M, Bianco A. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun 2004;10:16–7.
  • 25. Raffa V, Ciofani G, Nitodas S, Karachalios T, Alessandro D, Masini M, et al. Can the properties of carbon nanotubes influence their internalization by living cells? Carbon 2008;46:1600–10. 26. Lacerda L, Russier J, Pastorin G, Herrero MA, Venturelli E, Dumortier H, et al. Translocation mechanisms of chemically functionalised carbon nanotubes across plasma membranes. Biomaterials 2012;33:3334–3343.
  • 27. Chen X, Kis A, Zettl A, Bertozzi CR. A cell nanoinjector based on carbon naotubes. Proc Natl Acad Sci USA 2007;104:8218–22.
  • 28. Pantarotto D, Singh R, Mc Carty D, Erhardt M, Briand JP, Prato M, et al. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem Int Ed 2004;43:5242–6.
  • 29. Chłopaś K, Jagusiak A, Konieczny L, Piekarska B, Roterman I, Rybarska J, et al. The use of titan yellow dye as a metal ion binding marker for studies on the formation of specific complexes by supramolecular Congo red. Bio-Algorithms Med-Syst 2015;11:9–17.
  • 30. Bottini M, Magrini A, Rosato N, Bergamaschi A, Mustelin T. Dispersion of pristine single-walled carbon nanotubes in water by a thiolated organosilane: application in supramolecular nanoassemblies. J Phys Chem B 2006;110:13685–8.
  • 31. Sato Y, Yokoyama A, Shibata K, Akimoto Y, Ogino S, Nodasaka Y, et al. Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. Mol Biosyst 2005;1:176–82.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-50a3d860-9a66-4754-8e5b-7919f61913dd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.