Czasopismo
2020
|
Vol. 68, no. 2
|
365--375
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Three-dimensional inversion for susceptibility distributions is a common approach for quantitative interpretation of magnetic data. However, this approach will fail when strong remanence exists because the total magnetization direction is unknown. Magnetic amplitude inversion can reduce remanence efects and thus improve reconstructed results. In this paper, we propose a sparse magnetic amplitude inversion method which minimizes an L0-like-norm of model parameters subject to bound constraints. By using the iteratively reweighed least squares technique, the bound-constrained L0-like-norm sparse inversion is transformed to a sequence of bound-constrained nonlinear least squares subproblems. To deal with the bound constraints, we use a logarithm barrier algorithm to solve each subproblem. Compared with the classical L2-norm inversion method, the proposed sparse method utilizes the known physical property information to produce binary results characterized by sharp boundaries. This method is tested on synthetic data produced by a dipping dyke model and a feld data set acquired in Australia.
Czasopismo
Rocznik
Tom
Strony
365--375
Opis fizyczny
Bibliogr. 45 poz.
Twórcy
autor
- Key Laboratory for Resource Exploration Research of Hebei Province, School of Earth Science and Engineering, Hebei University of Engineering, Handan 056038, China, lizelin@hebeu.edu.cn
autor
- School of Geophysics and Information Technology, China University of Geosciences, Beijing 10083, China, clyao@cugb.edu.cn
Bibliografia
- 1. Abedi M, Fournier D, Devriese SG, Oldenburg DW (2018) Potential field signatures along the Zagros collision zone in Iran. Tectonophysics 722:25–42
- 2. Beaton AE, Tukey JW (1974) The fitting of power series, meaning polynomials, illustrated on band-spectroscopic data. Technometrics 16(2):147–185
- 3. Beiki M, Clark DA, Austin JR, Foss CA (2012) Estimating source location using normalized magnetic source strength calculated from magnetic gradient tensor data. Geophysics 77(6):J23–J37
- 4. Chartrand R, Yin W (2008) Iteratively reweighted algorithms for compressive sensing. In: 2008 IEEE international conference on acoustics, speech and signal processing, pp 3869–3872
- 5. Dampney CNG (1969) The equivalent source technique. Geophysics 34(1):39–53
- 6. Daubechies I, DeVore R, Fornasier M, Güntürk CS (2010) Iteratively reweighted least squares minimization for sparse recovery. Commun Pure Appl Math 63(1):1–38
- 7. Ellis RG, de Wet B, Macleod IN (2012) Inversion of magnetic data for remanent and induced sources. ASEG Ext Abstr 2012(1):1–4
- 8. Farquharson CG (2008) Constructing piecewise-constant models in multidimensional minimum-structure inversions. Geophysics 73(1):K1–K9
- 9. Farquharson CG, Oldenburg DW (1998) Non-linear inversion using general measures of data misfit and model structure. Geophys J Int 134(1):213–227
- 10. Guo L, Meng X, Zhang G (2014) Three-dimensional correlation imaging for total amplitude magnetic anomaly and normalized source strength in the presence of strong remanent magnetization. J Appl Geophys 111:121–128
- 11. Holland PW, Welsch RE (1977) Robust regression using iteratively reweighted least-squares. Commun Stat-Theory Methods 6(9):813–827
- 12. Hou ZC (1979) Using potential field transformation to build an interpretation system of gravity and magnetic anomalies. Geophys Geochem Explor 3(3):1–10 (in Chinese with English abstract)
- 13. Krahenbuhl RA, Li Y (2017) Investigation of magnetic inversion methods in highly magnetic environments under strong self-demagnetization effect. Geophysics 82(6):J83–J97
- 14. Last BJ, Kubik K (1983) Compact gravity inversion. Geophysics 48(6):713–721
- 15. Lelievre PG, Oldenburg DW (2006) Magnetic forward modelling and inversion for high susceptibility. Geophys J Int 166(1):76–90
- 16. Lelièvre PG, Oldenburg DW (2009) A 3D total magnetization inversion applicable when significant, complicated remanence is present. Geophysics 74(3):L21–L30
- 17. Lelièvre PG, Oldenburg DW, Williams NC (2009) Integrating geological and geophysical data through advanced constrained inversions. Explor Geophys 40(4):334–341
- 18. Li SL, Li Y (2014) Inversion of magnetic anomaly on rugged observation surface in the presence of strong remanent magnetization. Geophysics 79(2):J11–J19
- 19. Li Y, Oldenburg DW (1996) 3-D inversion of magnetic data. Geophysics 61(2):394–408
- 20. Li Y, Oldenburg DW (2003) Fast inversion of large-scale magnetic data using wavelet transforms and a logarithmic barrier method. Geophys J Int 152(2):251–265
- 21. Li Y, Sun J (2016) 3D magnetization inversion using fuzzy c-means clustering with application to geology differentiation. Geophysics 81(5):J61–J78
- 22. Li Y, Shearer SE, Haney MM, Dannemiller N (2010) Comprehensive approaches to 3D inversion of magnetic data affected by remanent magnetization. Geophysics 75(1):L1–L11
- 23. Li ZL, Yao CL, Zheng YM, Meng XH, Zhang YM (2015) 3D data-space inversion of magnetic amplitude data. Chin J Geophys 58(10):3804–3814 (in Chinese with English abstract)
- 24. Li Z, Yao C, Zheng Y, Wang J, Zhang Y (2018) 3D magnetic sparse inversion using an interior-point method. Geophysics 83(3):J15–J32
- 25. Liu S, Hu X, Liu T, Feng J, Gao W, Qiu L (2013) Magnetization vector imaging for borehole magnetic data based on magnitude magnetic anomaly. Geophysics 78(6):D429–D444
- 26. Liu S, Hu X, Xi Y, Liu T, Xu S (2015) 2D sequential inversion of total magnitude and total magnetic anomaly data affected by remanent magnetization. Geophysics 80(3):K1–K12
- 27. Liu S, Hu X, Zhang H, Geng M, Zuo B (2017) 3D magnetization vector inversion of magnetic data: improving and comparing methods. Pure appl Geophys 174(12):4421–4444
- 28. Nabighian MN (1972) The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: its properties and use for automated anomaly interpretation. Geophysics 37(3):507–517
- 29. Oldenburg DW, Li Y, Ellis RG (1997) Inversion of geophysical data over a copper gold porphyry deposit: a case history for Mt. Milligan Geophys 62(5):1419–1431
- 30. Paine J, Haederle M, Flis M (2001) Using transformed TMI data to invert for remanently magnetised bodies. Explor Geophys 32(3–4):238–242
- 31. Pedersen LB (1978) Wavenumber domain expressions for potential fields from arbitrary 2-, 21/2-, and 3-dimensional bodies. Geophysics 43(3):626–630
- 32. Pilkington M (1997) 3-D magnetic imaging using conjugate gradients. Geophysics 62(4):1132–1142
- 33. Pilkington M (2009) 3D magnetic data-space inversion with sparseness constraints. Geophysics 74(1):L7–L15
- 34. Pilkington M, Beiki M (2013) Mitigating remanent magnetization effects in magnetic data using the normalized source strength. Geophysics 78(3):J25–J32
- 35. Portniaguine O, Zhdanov MS (1999) Focusing geophysical inversion images. Geophysics 64(3):874–887
- 36. Portniaguine O, Zhdanov MS (2002) 3-D magnetic inversion with data compression and image focusing. Geophysics 67(5):1532–1541
- 37. Rao BD, Kreutz-Delgado K (1999) An affine scaling methodology for best basis selection. IEEE Trans Signal Process 47(1):187–200
- 38. Roest WR, Verhoef J, Pilkington M (1992) Magnetic interpretation using the 3-D analytic signal. Geophysics 57(1):116–125
- 39. Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Physica D 60(1–4):259–268
- 40. Shearer S, Li Y (2004) 3D inversion of magnetic total gradient data in the presence of remanent magnetization. SEG Tech Progr Expand Abstr 2004:774–777
- 41. Stavrev P, Gerovska D (2000) Magnetic field transforms with low sensitivity to the direction of source magnetization and high centricity. Geophys Prospect 48(2):317–340
- 42. Sun J, Li Y (2018) Magnetization clustering inversion-Part 1: building an automated numerical optimization algorithm. Geophysics 83(5):J61–J73
- 43. Wang MY, Di QY, Xu K, Wang R (2004) Magnetization vector inversion equations and 2D forward and inversed model study. Chin J Geophys 47(3):528–534 (in Chinese with English abstract)
- 44. Wilson H (1985) Analysis of the magnetic gradient tensor: defence Research Establishment Pacific. Tech Memo 8:5–13
- 45. Zhou J, Meng X, Guo L, Zhang S (2015) Three-dimensional cross-gradient joint inversion of gravity and normalized magnetic source strength data in the presence of remanent magnetization. J Appl Geophys 119:51–60
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5069b3aa-464e-4843-9367-152116310026