Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 26, nr 4 | 81--86
Tytuł artykułu

The effect of cross-linking agent amount and type on the sorption properties of starch graft polyacrylamide and poly(acrylic acid) copolymers

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In free radical polymerization initiated by 2,2’-azobis(2-methylpropionamidine) dihydrochloride, grafted starch copolymers with a weight ratio of acrylamide to acrylic acid of 1:2 were obtained. Three acrylic products were used to cross-linking starch copolymers: MBA, PETIA and EBECRYL 40 in amounts of: 0.2, 0.4, 0.6 and 1.0 wt.%. Materials were characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry and reoviscometry. The sorption properties of starch copolymers were confirmed by sorption tests: water absorption, swelling in water and sorption of cations: trivalent iron and divalent copper. The highest water absorption is characteristic of materials cross-linked with MBA (1800%), then PETIA (1400%) and EBECRYL 40 (850%). On the other hand, the best swelling results are in the sequence PETIA > MBA > EBECRYL (1050% > 900% > 570%). The most effective sorbent of cations is the copolymer cross-linked with MBA. Solution purifications of 90% and 45% were obtained for Fe+3 and Cu+2, respectively.
Wydawca

Rocznik
Strony
81--86
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wz.
Twórcy
  • Faculty of Chemical Technology and Engineering, Department of Chemical Organic Technology and Polymeric Materials, West Pomeranian University of Technology, Poland, Beata.Schmidt@zut.edu.pl
  • Faculty of Chemical Technology and Engineering, Department of Chemical Organic Technology and Polymeric Materials, West Pomeranian University of Technology, Poland
Bibliografia
  • 1. Alvarado, S., Megia-Fernandez, A., Ortega-Muñoz, M., Hernandez-Mateo, F., Lopez-Jaramillo, F.J. & Santoyo-Gonzalez, F. (2023). Removal of the Water Pollutant Ciprofloxacin Using Biodegradable Sorbent Polymers Obtained from Polysaccharides. Polymers, 15(15), 3188. DOI: 10.3390/polym15153188.
  • 2. Upadhyay, U., Sreedhar, I., Singh, S.A., Patel, C.M. & Anitha, K.L. (2021). Recent advances in heavy metal removal by chitosan based adsorbents. Carbohydrate Polymers. 251, 117000. DOI: 10.1016/j.carbpol.2020.117000.
  • 3. Xu, D., Guo, J. & Yan, F. (2018). Porous ionic polymers: Design, synthesis, and applications. Prog. Polymer Sci. 79, 121–143. DOI: 10.1016/j.progpolymsci.2017.11.005.
  • 4. Filimonova, E., Bergmann, T., Zhao, S., Dyatlov, V.A., Malfait, W. & Wu, T. (2024). Effect of polymer concentration and cross-linking density on the microstructure and properties of polyimide aerogels. J. Sol-Gel Sci. Technol. 110, 747–759. DOI: 10.1007/s10971-024-06390-0.
  • 5. Kashma, S., Vishal, S., Vijay, K. (2019). Chapter: Synthesis of Hydrogels by Modification of Natural Polysaccharides Through Radiation Cross-Linking Polymerization for Use in Drug Delivery. In book: Radiation Effects in Polymeric Materials, Springer, 269–292. DOI:10.1007/978-3-030-05770-1_8
  • 6. Yu, F., Yang, P., Yang, Z., Zhang, X. & Ma, J. (2021). Double-network hydrogel adsorbents for environmental applications. Chem. Engin. J. 426, 131900. DOI: 10.1016/j.cej.2021.131900.
  • 7. Schmidt, B., Spychaj, T. (2010). Sorption of Cu2+ and Fe3+ onto starch grafted copolymers obtained via reactive extrusion. Prz. Chem. 89,1628–1630.
  • 8. Agboola, O., Fayomi, O.S.I., Ayodeji, A., Ayeni, A.O., Alagbe E.E.1, Sanni S.E., Okoro, E.E., Moropeng, L., Sadiku, R., Kupolati, K.W. & Oni, B.A. (2020). A Review on Polymer Nanocomposites and Their Effective Applications in Membranes and Adsorbents for Water Treatment and Gas Separation. Membranes. 11(2), 139. DOI: 10.3390/membranes11020139.
  • 9. Masoumi, H., Ghaemi, A. & Gilani, H.G. (2021). Evaluation of hyper-cross-linked polymers performances in the removal of hazardous heavy metal ions: A review. Separation and Purification Technology. 260, 118221. DOI: 10.1016/j.seppur.2020.118221.
  • 10. Shah, N., Mewada, R.K. & Mehta, T. (2016). Crosslinking of starch and its effect on viscosity behaviour. Rev. Chem. Engin. 32(2). DOI: 10.1515/revce-2015-0047.
  • 11. Schmidt, B., Rokicka, J., Janik, J. & Wilpiszewska, K. (2020). Preparation and Characterization of Potato Starch Copolymers with a High Natural Polymer Content for the Removal of Cu(II) and Fe(III) from Solutions. 12(11), 2562. DOI: 10.3390/polym12112562.
  • 12. Bekchanov, D., Mukhamediev, M., Yarmanov, S., Lieberzeit, P. & Mujahid, A. (2024). Functionalizing natural polymers to develop green adsorbents for wastewater treatment applications. Carbohyd. Polym. 323, 121397. DOI: 10.1016/j.carbpol.2023.121397.
  • 13. Ambika, & Singh, P.P. (2021). 11 - Natural polymer-based hydrogels for adsorption applications. Natural Polymers-Based Green Adsorbents for Water Treatment. 267–306. DOI: 10.1016/B978-0-12-820541-9.00008-9.
  • 14. Ashogbon, A.O. & Akintayo, E.T. (2014). Recent trend in the physical and chemical modification of starches from different botanical sources: A review. Starch. 66, 41. DOI: 10.1002/star.201300106.
  • 15. De Oliveira, C.S., Andrade, M.M.P., Colman, T.A.D., da Costa, F.J.O.G. & E Schnitzler. (2014). Thermal, structural and rheological behaviour of native and modified waxy corn starch with hydrochloric acid at different temperatures. J. Thermal Anal. Calorim. 115, 13. DOI: 10.1007/s10973-013-3307-9.
  • 16. Schmidt, B. & Zubala, A. (2023). Rice starch as a polymer sorbent of iron cations. Polimery. 68(9), 473–479. DOI: 10.14314/polimery.2023.9.3.
  • 17. Guo, Q., Wang, Y., Fan, Y., Liu, X., Ren, S., Wen, Y. & Shen, B. (2015). Synthesis and characterization of multi-active site grafting starch copolymer initiated by KMnO4 and HIO4/H2SO4 systems. Carbohyd. Polym. 117, 247–254. DOI: 10.1016/j.carbpol.2014.09.033.
  • 18. Okyere, A.Y., Rajendran, S. & Annor, G.A. (2022). Cold plasma technologies: Their effect on starch properties and industrial scale-up for starch modification. Current Res. Food Sci. 5, 451–463. DOI: 10.1016/j.crfs.2022.02.007.
  • 19. Karma, V., Gupta, A.D., Yadav, D.K., Singh, A.A., Verma, M. & Singh, H. (2022). Recent Developments in Starch Modification by Organic Acids: A Review. Starch. 74, 9–10. DOI: 10.1002/star.202200025.
  • 20. Milanezzi, G.C. & Silva, E.K. (2025). Pulsed electric field-induced starch modification for food industry applications: A review of native to modified starches. Carbohyd. Polym. 348, 122793. DOI: 10.1016/j.carbpol.2024.122793.
  • 21. Al-Jubory, F.K, Mujtaba, I.M. & Abbas A.S. (2020). Preparation and characterization of biodegradable crosslinked starch ester as adsorbent. AIP Conference Procideengs. 2213, 020165. DOI: 10.1063/5.0000170.
  • 22. Bekchanov, D., Mukhamediev, M., Eshturs, D., Lieberzeit, P. & Su, X. (2024). Cellulose- and starch-based functional materials for efficiently wastewater treatment. Polym. Adv. Technol. 35(1), e6207. DOI: 10.1002/pat.6207.
  • 23. Schmidt, B. (2018). Effect of crosslinking agent on potato starch grafted acrylamide copolymers and their sorption properties for water, Fe3+ and Cu2+ cations. Polim. 63, 5. DOI: 10.14314/polimery.2018.5.3.
  • 24. Schmidt, B. & Spychaj, T. (2010). Polish: Sorpcja Cu2+ i Fe3+ na szczepionych kopolimerach skrobi z reaktywnego wytłaczania. Prz. Chem. 89, 1628–1630.
  • 25. Zdanowicz, M., Schmidt, B. & Spychaj, T. (2010). Starch graft copolymers as superabsorbents obtained via reactive extrusion processing. Polish J. Chem. Technol. 12, 14. DOI: 10.2478/v10026-010-0012-3.
  • 26. Lawal, O.S., Lechner M.D. & Kulicke, W.M. (2008). Single and multi-step carboxymethylation of water yam (Dioscorea alata) starch: Synthesis and characterization. Internat. J. Biological Macromol. 42, 429. DOI: 10.1016/j.ijbiomac.2008.02.006.
  • 27. Lanthong, P., Nuisin, R. & Kiatkamjornwong, S. (2006), Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents. Carbohyd. Polym. 66, 229. DOI: 10.1016/j.carbpol.2006.03.006.
  • 28. Kiatkamjornwong, S., Chomsaksakul, W. & Sonsuk, M. (2000). Radiation modification of water absorption of cassava starch by acrylic acid/acrylamide. Radiat. Physics Chem. 59, 413. DOI: 10.1016/S0969-806X(00)00297-8.
  • 29. Eutamene, M., Benbakhti, A., Khodja, M. & Jada, A. (2009). Preparation and Aqueous Properties of Starch-grafted Polyacrylamide Copolymers. Starch. 61, 2, 81. DOI: 10.1002/star.200800231.
  • 30. Tungala, K., Maurya, A., Adhikary, P., Sonker, E., Kerketta, A., Karmakar, N.C. & Krishnamoorthi, S. (2017). Flocculation characteristic of tapioca starch grafted polyacryl-amide in kaolin and opencast coal mines dust suspensions and methylene blue dye removal. Res. J. Life Sci. Bioinf. Pharmac. Chem. Sci. 2(5), 138–155. DOI: 10.26479/2017.0205.13.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-50688ada-efdb-4f82-8299-d55937ee2827
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.