Czasopismo
2011
|
Vol. 31, Fasc. 2
|
331--347
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Let {Xn} be a sequence of independent identically distributed random variables with a common continuous distribution function and let Mj;n denote the jth upper order statistic among X1,X2, . . . ,Xn, n ≥ j. For a large class of distributions, we obtain the law of the iterated logarithm for {M1,n,M2,n}, properly normalized. As a consequence, we establish a law of the iterated logarithm for the spacings {M1,n −M2,n}.
Czasopismo
Rocznik
Tom
Strony
331--347
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
autor
- Department of Statistics, University of Mysore, Mysore-570006, India, vasudeva.rasbagh@gmail.com
autor
- Department of Statistics, Payame Noor University, Manjil, Iran, moridani@gmail.com
Bibliografia
- [1] O. Barndorff-Nielsen, On the rate of growth of the partial maxima of a sequence of i.i.d. random variables, Math. Scand. 9 (1961), pp. 383-394.
- [2] J. Chover, A law of iterated logarithm for stable summands, Proc. Amer. Math. Soc. 17 (1967), pp. 441-443.
- [3] L. Devroye, Laws of the iterated logarithm for order statistics of uniform spacings, Ann. Probab. 9 (5) (1981), pp. 860-867.
- [4] J. Galambos, The Asymptotic Theory of Extreme Order Statistics, first edition, Wiley, New York 1978.
- [5] A. Gut, Limit points of sample maxima, Statist. Probab. Lett. 9 (1990), pp. 331-336.
- [6] L. de Haan and A. Hordijk, The rate of growth of sample maxima, Ann. Math. Statist. 43 (1972), pp. 1185-1196.
- [7] P. Hall, On the relative stability of large order statistics, Math. Proc. Cambridge Philos. Soc. 86 (1979), pp. 467-475.
- [8] J. Kiefer, Iterated logarithm analogues for sample quantiles when p ↓ 0, in: Procedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, 1971, pp. 227-244.
- [9] A. G. Pakes, The number and sum of near-maxima for thin tailed populations, Adv. in Appl. Probab. 32 (2000), pp. 1100-1116.
- [10] E. Seneta, Regularly Varying Functions, Lecture Notes in Math., Vol. 508, Springer, Berlin 1976.
- [11] R. Vasudeva and S. Savitha, Law of the iterated logarithm for random subsequences, J. Indian Statist. Assoc. 30 (1992), pp. 13-24.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5058c407-2abe-41e9-a632-d7b7a04afe2c