Czasopismo
2016
|
Vol. 36, Fasc. 2
|
311--333
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Assume that X is a càdlàg, real-valued martingale starting from zero, H is a predictable process with values in [−1, 1] and Y = ∫ HdX. This article contains the proofs of the following inequalities: (i) If X has continuous paths, then P(supt ≥ 0 Yt ≥ 1) ≤ 2E supt ≥ 0 Xt, where the constant 2 is the best possible. (ii) If X is arbitrary, then P(supt ≥ 0 Yt ≥ 1) ≤ cE supt ≥ 0 Xt; where c = 3.0446… is the unique positive number satisfying the equation 3c4 − 8c3 − 32 = 0. This constant is the best possible.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
311--333
Opis fizyczny
Bibliogr. 16 poz., wykr.
Twórcy
autor
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland, mateusz.rapicki@mimuw.edu.pl
Bibliografia
- [1] R. Bañuelos and K. Bogdan, Lévy processes and Fourier multipliers, J. Funct. Anal. 250 (2007), pp. 197-212.
- [2] R. Bañuelos and A. Osękowski, Martingales and sharp bounds for Fourier multipliers, Ann. Acad. Sci. Fenn. Math. 37 (2012), pp. 251-263.
- [3] R. Bañuelos and A. Osękowski, On Astala’s theorem for martingales and Fourier multipliers, Adv. Math. 283 (2015), pp. 275-302.
- [4] R. Bañuelos and G. Wang, Sharp inequalities for martingales with applications to the Beurling-Ahlfors and Riesz transformations, Duke Math. J. 80 (1995), pp. 575-600.
- [5] K. Bichteler, Stochastic integration and Lp-theory of semimartingales, Ann. Probab. 9 (1981), pp. 49-89.
- [6] D. L. Burkholder, Boundary value problems and sharp inequalities for martingale transforms, Ann. Probab. 12 (1984), pp. 647-702.
- [7] D. L. Burkholder, Sharp norm comparison of martingale maximal functions and stochastic integrals, in: Proceedings of the Norbert Wiener Centenary Congress, East Lansing, MI, 1994, Proc. Sympos. Appl. Math., Vol. 52, Amer. Math. Soc., Providence, RI, 1997, pp. 343-358.
- [8] C. Dellacherie and P.-A. Meyer, Probabilities and Potential B: Theory of Martingales, North-Holland, Amsterdam 1982.
- [9] K. Domelevo and S. Petermichl, Sharp Lp estimates for discrete second order Riesz transforms, Adv. Math. 262 (2014), pp. 932-952.
- [10] S. Geiss, S. Montgomery-Smith, and E. Saksman, On singular integral and martingale transforms, Trans. Amer. Math. Soc. 362 (2010), pp. 553-575.
- [11] A. Osękowski, Sharp maximal inequality for stochastic integrals, Proc. Amer. Math. Soc. 136 (2008), pp. 2951-2958.
- [12] A. Osękowski, Sharp Martingale and Semimartingale Inequalities, Monografie Matematyczne, Vol. 72, Birkhäuser, Basel 2012.
- [13] A. Osękowski, Survey article: Bellman function method and sharp inequalities for martingales, Rocky Mountain J. Math. 43 (2013), pp. 1759-1823.
- [14] A. Osękowski, Maximal weak-type inequality for stochastic integrals, Electron. Commun. Probab. 19 (2014), Article 25, pp. 1-13.
- [15] Y. Suh, A sharp weak type (p, p) inequality (p > 2) for martingale transforms and other subordinate martingales, Trans. Amer. Math. Soc. 357 (2005), pp. 1545-1564.
- [16] G. Wang, Differential subordination and strong differential subordination for continuous time martingales and related sharp inequalities, Ann. Probab. 23 (1995), pp. 522-551.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5012302a-18ed-4e2c-85be-b3fc0442ac8c