Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 68, iss. 4 | 1439--1446
Tytuł artykułu

Three-Point Bending Response of Nylon 12 Obtained by Fused Filament Fabrication (FFF) Versus Selective Laser Sintering (SLS)

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study analyses the three-point bending behavior of Nylon 12 (PA12) specimens produced using two additive manufacturing technologies (i.e., fused filament fabrication and selective laser sintering). A Nylon 12 commercially available filament (from Fiberlab S.A.) was selected to employ the fused filament fabrication method (FFF) with a Prusa 3D desktop printer, whereas Nylon 12 sintering powder (from Formlabs Inc.) was chosen for selective laser sintering (SLS) using a benchtop industrial SLS platform, Formlabs Fuse 1, with a powder refresh ratio of 30%. The bending strength and flexural elasticity moduli were determined by following ISO 178:2019 standard specifications to assess the effect of two different technologies on the mechanical behavior of three-point bending specimens produced in three distinct build orientations (i.e., 0°, 45°, and 90°) relative to the printing platform. One-way ANOVA analysis, Tukey’s HSD, and Games-Howell tests are considered to assess the statistical variability of experimental data and compare the mean values of bending strength and flexural moduli. The testing results for the three orientations under question show notable differences and interesting similarities either in terms of strength or elasticity response for a significance p-level of 0.05.
Wydawca

Rocznik
Strony
1439--1446
Opis fizyczny
Bibliogr. 46 poz., fot., rys., tab., wzory
Twórcy
  • Transilvania University of Brașov, Department of Mechanical Engineering, Eroilor Bvd. 29, 500036, Brașov, Romania, mariusbaba@unitbv.ro
  • Transilvania University of Brașov, Department of Automotive and Transport Engineering, Eroilor Bvd. 29, 500036, Brașov, Romania
  • École Centrale de Marseille, 38 Rue Frédéric Joliot Curie, 13013, Marseille, France
Bibliografia
  • [1] M. Sperry, A. Busath, M. Ottesen, J. Heslington, N. Crane, Post-Processing and Material Properties of Nylon 12 Prepared by Laser-Powder Bed Fusion, ASME International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers 85567, V02BT02A031 (2021).
  • [2] J. Rydz, W. Sikorska, M. Kyulavska, D. Christova, Polyester-based (bio) degradable polymers as environmentally friendly materials for sustainable development, International Journal of Molecular Sciences 16 (1), 564-596 (2014).
  • [3] A. Awad, F. Fina, A. Goyanes, S. Gaisford, A.W. Basit, 3D printing: Principles and pharmaceutical applications of selective laser sintering, International Journal of Pharmaceutics 586, 119594 (2020).
  • [4] D.W. Martinez, M.T. Espino, H.M. Cascolan, J.L. Crisostomo, J.R.C. Dizon, A Comprehensive Review on the Application of 3D Printing in the Aerospace Industry, Key Engineering Materials 913, 27-34 (2022).
  • [5] S. Saleh Alghamdi, S. John, N. Roy Choudhury, N.K. Dutta, Additive manufacturing of polymer materials: Progress, promise and challenges. Polymers 13 (5), 753 (2021).
  • [6] S. Singh, A. Sachdeva, V.S. Sharma. A study on selective laser sintered parts for dimensional and surface characteristics, Journal of Manufacturing Technology Research, 4 (3-4), 145-157 (2012).
  • [7] S. Dupin, O. Lame, C. Barrès, J.Y. Charmeau, Microstructural origin of physical and mechanical properties of polyamide 12 processed by laser sintering, European Polymer Journal 48 (9), 1611-1621 (2012).
  • [8] J.P. Kruth, P. Mercelis, J. Van Vaerenbergh, L. Froyen, M. Rombouts, Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyping Journal 11 (1), 26-36 (2005).
  • [9] R.D. Goodridge, C.J. Tuck, R.J.M. Hague, Laser sintering of polyamides and other polymers, Progress in Materials Science 57 (2), 229-267 (2012).
  • [10] B.N. Turner, R. Strong, S.A. Gold, A review of melt extrusion additive manufacturing processes: I. Process design and modeling, Rapid Prototyping Journal 20 (3), 192-204 (2014).
  • [11] J. Kotlinski, Mechanical properties of commercial rapid prototyping materials, Rapid Prototyping Journal 20 (6), 499-510 (2014).
  • [12] A. Kafle, E. Luis, R. Silwal, H.M. Pan, P.L. Shrestha, A.K. Bastola, 3D/4D Printing of polymers: Fused deposition modelling (FDM), selective laser sintering (SLS), and stereolithography (SLA), Polymers 13 (18), 3101 (2021).
  • [13] L. Feng, Y. Wang, Q. Wei, PA12 Powder recycled from SLS for FDM, Polymers 11 (4), 727 (2019).
  • [14] D.G. Zisopol, I. Nae, A.I. Portoaca, I. Ramadan, A Statistical Approach of the Flexural Strength of PLA and ABS 3D Printed Parts, Engineering, Technology & Applied Science Research 12(2), 8248-8252 (2022).
  • [15] P.K. Jain, P.M. Pandey, P.V.M. Rao, Experimental investigations for improving part strength in selective laser sintering, Virtual and Physical Prototyping 3 (3), 177-188 (2008).
  • [16] T.L. Starr, T.J. Gornet, J.S. Usher, The effect of process conditions on mechanical properties of laser‐sintered nylon, Rapid Prototyping Journal 17 (6), 418-423 (2011).
  • [17] E.C. Hofland, I. Baran, D.A. Wismeijer, Correlation of proces parameters with mechanical properties of laser sintered PA12 parts, Advances in materials science and engineering 4953173, 11 (2017).
  • [18] A. Pilipović, T. Brajlih, I. Drstvenšek, Influence of processing parameters on tensile properties of SLS polymer product, Polymers 10 (11), 1208 (2018).
  • [19] L.L. Dincă, N.M. Popa, N.L. Milodin, C. Stanca, D. Gheorghiu, Influence of the process parameters on mechanical properties of the final parts obtained by selective laser sintering from PA2200 powder, MATEC Web Conf. 299, 11 (2019).
  • [20] F. Lupone, E. Padovano, F. Casamento, C. Badini, Process Phenomena and Material Properties in Selective Laser Sintering of Polymers: A Review, Materials 15 (1), 183 (2021).
  • [21] U. Ajoku, N. Saleh, N. Hopkinson, R. Hague, P. Erasenthiran, Investigating mechanical anisotropy and end-of-vector effect in laser-sintered nylon parts, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 220 (7), 1077-1086 (2006).
  • [22] B. Caulfield, P.E. McHugh, S. Lohfeld, Dependence of mechanical properties of polyamide components on build parameters in the SLS process, Journal of Materials Processing Technology 182 (1-3), 477-488 (2007).
  • [23] C. Majewski, N. Hopkinson, Effect of section thickness and build orientation on tensile properties and material characteristics of laser sintered nylon‐12 parts, Rapid Prototyping Journal 17 (3), 176-180 (2011).
  • [24] W. Cooke, R.A. Tomlinson, R. Burguete, D. Johns, G. Vanard, Anisotropy, homogeneity and ageing in an SLS polymer, Rapid Prototyping Journal 17 (4), 267-279 (2011).
  • [25] L. Marsavina, D.I. Stoia, Flexural properties of selectively sintered polyamide and alumide, Material Design & Processing Communications 2 (1), e112 (2012).
  • [26] C.S. Miron-Borzan, M.C. Dudescu, P. Berce, Bending and compression tests for PA 2200 parts obtained using Selective Laser Sintering method, MATEC Web Conf. 94, 03010 (2017).
  • [27] M. Tomanik, M. Żmudzińska, M. Wojtków, Mechanical and Structural Evaluation of the PA12 Desktop Selective Laser Sintering Printed Parts Regarding Printing Strategy, 3D Printing and Additive Manufacturing 8 (4), 271-279 (2021).
  • [28] M.N. Baba, Flatwise to Upright Build Orientations under Three-Point Bending Test of Nylon 12 (PA12) Additively Manufactured by SLS, Polymers 14 (5), 1026 (2022).
  • [29] S. Singh, V.S. Sharma, A. Sachdeva, S.K. Sinha, Optimization and analysis of mechanical properties for selective laser sintered polyamide parts, Materials and Manufacturing Processes 28 (2), 163-172 (2013).
  • [30] J. Wu, X. Xu, Z. Zhao, M. Wang, J. Zhang, Study in performance and morphology of polyamide 12 produced by selective laser sintering technology, Rapid Prototyping Journal 24 (5), 813-820 (2018).
  • [31] J. Schneider, S. Kumar, Multiscale characterization and constitutive parameters identification of polyamide (PA12) processed via selective laser sintering, Polymer Testing 86, 106357 (2020).
  • [32] D.A. Şerban, G. Weber, L. Marşavina, V.V. Silberschmidt, W. Hufenbach, Tensile properties of semi-crystalline thermoplastic polymers: effects of temperature and strain rates, Polymer Testing 32 (2), 413-425 (2013).
  • [33] P. Obst, M. Launhardt, D. Drummer, P.V. Osswald, T.A. Osswald, Failure criterion for PA12 SLS additive manufactured parts, Additive Manufacturing 21, 619-627 (2018).
  • [34] F.R.Phillips, T.C. Henry, J. Hrynuk, R.A. Haynes, E. Bain, J. Westrich, Utilization of Three-Point Bending for Numerical Prediction of Structural Response in Additively Manufactured Parts, US Army Combat Capabilities Development Command Army Research Laboratory Austin United States. (2020).
  • [35] R. Brighenti, M.P. Cosma, L. Marsavina, A. Spagnoli, M. Terzano, Laser-based additively manufactured polymers: a review on processes and mechanical models, Journal of Materials Science 56 (2), 961-998 (2021).
  • [36] S. Rosso, R. Meneghello, L. Biasetto, L. Grigolato, G. Concheri, G. Savio, In-depth comparison of polyamide 12 parts manufactured by Multi Jet Fusion and Selective Laser Sintering, Additive Manufacturing 36, 101713 (2020).
  • [37] C. Cai, W.S. Tey, J. Chen, W. Zhu, X. Liu, T. Liu, L. Zhao, K. Zhou, Comparative study on 3D printing of polyamide 12 by selective laser sintering and multi jet fusion, Journal of Materials Processing Technology 288, 116882 (2021).
  • [38] F. Calignano, F. Giuffrida, M. Galati, Effect of the build orientation on the mechanical performance of polymeric parts produced by multi-jet fusion and selective laser sintering, Journal of Manufacturing Processes 65, 271-282 (2021).
  • [39] X. Gao, D. Zhang, X. Wen, S. Qi, Y. Su, X. Dong, Fused deposition modeling with polyamide 1012, Rapid Prototyping Journal 25 (7), 1145-1154 (2019).
  • [40] H. Li, S. Zhang, Z. Yi, J. Li, A. Sun, J. Guo, G. Xu, Bonding quality and fracture analysis of polyamide 12 parts fabricated by fused deposition modeling, Rapid Prototyping Journal 23 (6), 973-982 (2017).
  • [41] M. Kam, A. Ipekçi, Ö. Sengül, Investigation of the effect of FDM process parameters on mechanical properties of 3D printed PA12 samples using Taguchi method, J. Thermoplast. Compos. Mater. 08927057211006459, 1-5 (2021).
  • [42] F. Knoop, V. Schoeppner, Mechanical and thermal properties of FDM parts manufactured with polyamide 12, Proceedings of the 26th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, Austin, TX, USA, 10-12 (2015).
  • [43] N. Vidakis, M. Petousis, L. Tzounis, A. Maniadi, E. Velidakis, N. Mountakis, J.D. Kechagias, Sustainable additive manufacturing: Mechanical response of polyamide 12 over multiple recycling processes, Materials 14 (2), 466 (2021).
  • [44] https://c-3d.niceshops.com/upload/file/FIBERLOGY_NYLON_PA12_TDS.pdf (accessed 31 March 2022).
  • [45] https://formlabs-media.formlabs.com/datasheets/2001447-TDS-ENUS-0.pdf (accessed 31 March 2022).
  • [46] ISO 178: 2019, Plastics - determination of flexural properties, ISO Committee, Geneva, (2019)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-50093db9-b4bc-4e7c-90b0-686bf643ec71
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.