Warianty tytułu
Języki publikacji
Abstrakty
The paper studies the dynamic behavior of the vibratory sieving conveyor equipped with the twin crank-slider excitation mechanism. The main purpose of this research consists in substantiating the possibilities of implementing the improved drive for providing the controllable vibration parameters of the working member (conveying tray, sieve, etc.) in accordance with the specific technological requirements set for different materials to be sieved and conveyed. In order to reach the goal set above, the following objectives are established: analyzing the design peculiarities of the vibratory sieving conveyor; deriving the mathematical model describing the conveyor’s oscillatory system dynamic behavior; studying the system kinematic, dynamic, and power characteristics. The system motion is described using the Lagrange-d’Alembert principle, and the numerical modeling is carried out in the Mathematica software with the help of the Runge-Kutta methods. The influence of the vibratory system's geometrical parameters on the motion conditions of the conveyor’s working member (conveying tray and sieve) is analyzed.
Czasopismo
Rocznik
Tom
Strony
art. no. 2023226
Opis fizyczny
Bibliogr. 20 poz., rys. kolor., wykr.
Twórcy
autor
- Lviv Polytechnic National University, S. Bandera Street 12, 79013 Lviv, Ukraine, vitaliy.nulp@gmail.com
autor
- Lviv Polytechnic National University, S. Bandera Street 12, 79013 Lviv, Ukraine
autor
- Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego Street 27, 50-370 Wroclaw, Poland
autor
- Lviv Polytechnic National University, S. Bandera Street 12, 79013 Lviv, Ukraine
Bibliografia
- 1. B. Chen, J. Yan, Z. Yin, K.K. Tamma; A new study on dynamic adjustment of vibration direction angle for dual-motor-driven vibrating screen; Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2021, 235(2), 186-196; DOI: 10.1177/0954408920952603
- 2. V. Gursky, I. Kuzio, P. Krot, R. Zimroz; Energy-saving inertial drive for dual-frequency excitation of vibrating machines; Energies, 2021, 14(1), 14010071; DOI: 10.3390/en14010071
- 3. V. Gursky, P. Krot, V. Korendiy, R. Zimroz; Dynamic analysis of an enhanced multi-frequency inertial exciter for industrial vibrating machines; Machines, 2022, 10(2), 10020130; DOI: 10.3390/machines10020130
- 4. V. Gurskyi, V. Korendiy, P. Krot, R. Zimroz, O. Kachur, N. Maherus; On the dynamics of an enhanced coaxial inertial exciter for vibratory machines; Machines, 2023, 11(1), 97; DOI: 10.3390/machines11010097
- 5. V. Yatsun, G. Filimonikhin, V. Pirogov, V. Amosov, P. Luzan; Research of anti-resonance three-mass vibratory machine with a vibration exciter in the form of a passive auto-balancer, Eastern-European Journal of Enterprise Technologies, 2020, 5(7(107)), 89-97; DOI: 10.15587/1729-4061.2020.213724
- 6. G. Filimonikhin, V. Pirogov, M. Hodunko, R. Kisilov, V. Mazhara; The dynamics of a resonance single-mass vibratory machine with a vibration exciter of targeted action that operates on the Sommerfeld effect; Eastern-European Journal of Enterprise Technologies, 2021, 3(7(111)), 51-58; DOI: 10.15587/1729-4061.2021.233960
- 7. A. Kim, M. Doudkin, A. Ermilov, G. Kustarev, M. Sakimov, M. Mlynczak; Analysis of vibroexciters working process of the improved efficiency for ice breaking, construction and road machines; Journal of Vibroengineering, 2020, 22(3), 465-485; DOI: 10.21595/jve.2020.20446
- 8. V.V. Mikheyev, S.V. Saveliev; Planetary adjustable vibratory exciter with chain gear; Journal of Physics: Conference Series, 2019, 1210(1), 012097; DOI: 10.1088/1742-6596/1210/1/012097
- 9. V.V. Mikheyev; New type of vibration generator with vibratory force oriented in preferred direction; Journal of Vibration Engineering and Technologies, 2018, 6(2), 149-154; DOI: 10.1007/s42417-018-0025-4
- 10. G.F. Alşverişçi; The nonlinear behavior of vibrational conveyers with single-mass crank-and-rod exciters; Mathematical Problems in Engineering, 2012, 534189; DOI: 10.1155/2012/534189
- 11. Z. Algazy; The substantiating of the dynamic parameters of the shaking conveyor mechanism; Vibroengineering Procedia, 2015, 5, 15-20.
- 12. V. Korendiy, V. Gursky, O. Kachur, V. Gurey, O. Havrylchenko, O. Kotsiumbas; Mathematical modeling of forced oscillations of semidefinite vibro-impact system sliding along rough horizontal surface; Vibroengineering Procedia, 2021, 39, 164-169; DOI: 10.21595/vp.2021.22298
- 13. V. Korendiy, O. Kachur, P. Dmyterko; Kinematic analysis of an oscillatory system of a shaking conveyor-separator; In: Advanced Manufacturing Processes III. InterPartner 2021. Lecture Notes in Mechanical Engineering; V. Tonkonogyi, V. Ivanov, J. Trojanowska, G. Oborskyi, I. Pavlenko, Eds.; Springer: Cham, Switzerland, 2022, 592-601; DOI: 10.1007/978-3-030-91327-4_57
- 14. A. Bisoi, A.K. Samantaray, R. Bhattacharyya; Control strategies for DC motors driving rotor dynamic systems through resonance; Journal of Sound and Vibration, 2017, 411, 304-327; DOI: 10.1016/j.jsv.2017.09.014
- 15. A. Sinha, S.K. Bharti, A.K. Samantaray, G. Chakraborty, R. Bhattacharyya; Sommerfeld effect in an oscillator with a reciprocating mass; Nonlinear Dynamics, 2018, 93(3), 1719-1739; DOI: 10.1007/s11071-018-4287-x
- 16. M.P. Yaroshevich, I.P. Zabrodets, T.S. Yaroshevich; Dynamics of vibrating machines starting with unbalanced drive in case of bearing body flat vibrations; Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2015, 3, 39-45.
- 17. P. Krot, R. Zimroz, A. Michalak, J. Wodecki, Sz. Ogonowski, M. Drozda, M. Jach; Development and verification of the diagnostic model of the sieving screen; Shock and Vibration, 2020, 8015465; DOI: 10.1155/2020/8015465
- 18. V. Korendiy, I. Kuzio, S. Nikipchuk, O. Kotsiumbas, P. Dmyterko; On the dynamic behavior of an asymmetric self-regulated planetary-type vibration exciter; Vibroengineering Procedia, 2022, 42, 7-13; DOI: 10.21595/vp.2022.22580
- 19. V. Korendiy, V. Gurey, V. Borovets, O. Kotsiumbas, V. Lozynskyy; Generating various motion paths of single-mass vibratory system equipped with symmetric planetary-type vibration exciter; Vibroengineering Procedia, 2022, 43, 7-13; DOI: 10.21595/vp.2022.22703
- 20. O. Lanets, O. Kachur, V. Korendiy, V. Lozynskyy; Controllable crank mechanism for exciting oscillations of vibratory equipment; In: Advances in Design, Simulation and Manufacturing IV. DSMIE 2021. Lecture Notes in Mechanical Engineering; V. Ivanov , I. Pavlenko, O. Liaposhchenko, J. Machado, M. Edl, Eds.; Springer: Cham, Switzerland, 2021, 43-52; DOI: 10.1007/978-3-030-77823-1_5
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4fbf958b-c1fd-4de1-a92a-c6a5f3a4f6ea