Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | Nr 50 | 77--90
Tytuł artykułu

Singular integral equations with multiplicative Cauchy-type kernels

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we consider singular integral equations of the first kind with multiplicative Cauchy-type kernels defined on n-dimensional domains. We give their general solutions in the class of Holder continuous functions and propose the statements of uniqueness problem.
Wydawca

Rocznik
Tom
Strony
77--90
Opis fizyczny
Bibliog. 29 poz.
Twórcy
  • Institute of Mathematics and Computer Science The John Paul II Catholic University of Lublin Al. Racławickie 14, 20-950 Lublin, Poland Department of Electrical and Computer Engineering University of Alberta 9107 - 116 Street, Edmonton, AB, Canada T6G 2V4, pawelk@kul.pl
autor
  • Institute of Mathematics and Computer Science The John Paul II Catholic University of Lublin Al. Racławickie 14, 20-950 Lublin, Poland , dorotab@kul.pl
autor
  • Institute of Mathematics and Computer Science The John Paul II Catholic University of Lublin Al. Racławickie 14, 20-950 Lublin, Poland, wojcikpa@kul.pl
Bibliografia
  • [1] Agarwal R.P., O’Regan d., Infinite Interval Problems For Differential, Difference and Integral Equations, Kluwer Akademic Publishers, Dordrecht, 2001.
  • [2] Agarwal R.P., O’Regan D., Singular Differential and Integral Equations with Applications, Kluwer Akademic Publishers, Dordrecht, 2003.
  • [3] Akel M.S., Hussein H.S., Numerical treatment of solving singular integral equations by using Sinc approximations, Appl. Math. Comput., 218(2011), 3565-3573.
  • [4] Belotserkovsky S.M., Lifanov I.K., Method of Discrete Vortices, CRC Press, Boca Raton, 1993.
  • [5] Bisplinghoff R.L., Ashley H., Halfman R.L., Aeroelasticity, Dover Publications, Mineola, 1996.
  • [6] Borja M., Brakhage H., Uber die numerische Behandlung der Trag- flachengleichung, ZAMM Z. Angew. Math. Mech., 47(1967), 102-103.
  • [7] Chen Z., Wang C., Zhou Y., A new method for solving Cauchy type singular integral equations of the second kind, Int. J. Comput. Math., 87(2010), 2076-2087.
  • [8] Ditkin V.A., Prudnikov A.P., Integral Transforms and Operational Calculus, Pergamon Press, New York, 1965.
  • [9] Dzhuraev A., Methods of Singular Integral Equations, Longman Scientific & Technical, Harlow, 1992.
  • [10] Erdogan F., Gupta G.D., Cook T.S., Numerical solution of singular integral equations, in: Mechanics of Fracture, 1, 368—425, Noordhoff International Publishing, Leiden, 1973.
  • [11] Estrada R., Kanwal R.P., Singular Integral Equations, Birkhauser, Boston, 2000.
  • [12] Gabdulkhaev B.G., Finite-dimensional approximations of singular integrals and direct methods of solution of singular integral and integrodifferential equations, J. Math. Sci. (N. Y.), 18(1982), 593-627.
  • [13] Gakhov F.D., Boundary Value Problems, Dover Publications, Mineola, 1990.
  • [14] Karczmarek P., Singular integral equation with a multiplicative Cauchy kernel in the half-plane, Opuscula Math., 28(2008), 63-72.
  • [15] Karczmarek P., Application of Chebyshev and trigonometric polynomials to the approximation of a solution of a singular integral equation with a multiplicative Cauchy kernel in the half-plane, Opuscula Math., 28(2008), 129-136.
  • [16] Karczmarek P., Approximate solution of a singular integral equation with a multiplicative Cauchy kernel in the half-plane, Comput. Methods Appl. Math., 8(2008), 143-154.
  • [17] Karczmarek P., Numerical Solution of Singular Integral Equation in the Half-Plane, in: L. Gadomski, M. Jakubiak, A. N. Prokopenya (eds.), Computer Algebra Systems in Teaching and Research. Differential Equations, Dy¬namical Systems and Celestial Mechanics, Collegium Mazovia, Siedlce, 2011, 46-57.
  • [18] Lifanov I.K., Singular Integral Equations and Discrete Vortices, VSP, Utrecht, 1996.
  • [19] Lifanow I.K., Poltavskii L.N., Vainikko G.M., Hypersigular Integral Equations and Their Applications, Chapman & Hall/CRC, Boca Raton, 2004.
  • [20] Mandal B.N., Chakrabarti a., Applied Singular Integral Equations, CRC Press, Boca Raton, 2011.
  • [21] Mikhlin S.G., PROSSDORF, Singular Integral Operators, Springer-Verlag, Berlin Heidelberg, 1986.
  • [22] Mtyushev V., RogosinS., Constructive Methods for Linear and Nonlinear Boundary Value Problems of the Analytic Functions. Theory and Applications, Monographs and Surveys in Pure and Applied Mathematics, New York etc: Chapman & Hall/CRC, 2000.
  • [23] Muskhelishvili N.I., Singular Integral Equations. Boundary Problems of Function Theory and Their Application to Mathematical Physics, Dover Pub-lications, 2008.
  • [24] Pylak D., Sheshko M.A., Inversion of singular integrals with Cauchy Kernels in the case of an infinite integration domain, Differ. Equ., 41(2005), 1229-1241.
  • [25] Pylak D., Approximate solutions of a singular integral equation with Cauchy kernels in the quarter plane, Opuscula Math., 28(2008), 179-194.
  • [26] Sheshko M., Singular Integral Equations with Cauchy and Hilbert Kernels and Theirs Approximated Solutions, Catholic University of Lublin, Lublin, 2003.
  • [27] Sheshko M.A., Rasol’ko G., Exact and approximated formulas for the inversion of a multiple integral with Cauchy kernels, Differ. Equ., 5(1989), 911-915.
  • [28] Sheshko M.A., Sheshko S.M., Inversion of singular integrals with multiplicative Cauchy kernel and infinite integration domain, Differ. Equ., 47(2011), 534-546.
  • [29] Weissinger J., The Lift Distribution of Swept-back Wings, N.A.C.A. Technical Memorandum, No. 1120, 1947.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4f8afa80-640d-4b38-aaf3-a528e019cfc3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.