Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2022 | No. 64 (3) | 503--513
Tytuł artykułu

Mud volcano as a feature of emergence in Caspian Sea

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An eruption occurred on Dashli Island, 75 km from Baku, on 4th of July 2021, at 21:51 local time. The island is known as the mud volcano and has a history of eruption. We suspected that mud volcano eruption causes emergence on this island. Thus, the effect of this 2021 eruption is investigated using a remote sensing technique. Processed Sentinel-1 and 2 images are employed for this aim. We considered pre- and post-eruption scenarios to evaluate the effect of this eruption on the island. Satellite image classification is used to calculate shoreline changes. Results show that Dashli Island with an area of about 8.55 ha before eruption is now expanded to about 21.8 ha (about 155% increase). The DInSAR method is used to estimate the ground displacement of the island. According to the results, a two-year-displacement before the eruption was between 0.18 and 0.2 m, while a five-month-displacement after the eruption is estimated to be between 0.32 and 0.4 m. Considering ground displacement pre- and post-eruption we estimated 62000 m3 land gaining, due to emergence. We concluded that mud volcano can be counted as a feature of emergence in Dashli Island
Słowa kluczowe
Wydawca

Czasopismo
Rocznik
Strony
503--513
Opis fizyczny
Bibliogr. 47 poz., fot., rys., tab., wykr.
Twórcy
  • Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
Bibliografia
  • 1. Antonielli, B., Monserrat, O., Bonini, M., Righini, G., Sani, F., Luzi, G., Feyzullayev, A.A., Aliyev, C.S., 2014. Pre-eruptive ground deformation of Azerbaijan mud volcanoes detected through satellite radar interferometry (DInSAR). Tectonophysics 637, 163-177. https://doi.org/10.1016/j.tecto.2014.10.005
  • 2. Aliyev, A.A., Guliyev, I.S., Dadashov, F.H., Rakhmanov, R.R., 2015. Atlas of the world mud volcanoes. Nafta-Press Publ.
  • 3. Baker, H., 2021. Rare mud volcano explodes into towering inferno in Caspian Sea [WWW Document]. https://www.livescience.com/caspian- sea- explosion- mud- volcano.html (accessed 7.28.21).
  • 4. Baloglanov, E.E., Abbasov, O.R., Akhundov, R.V, 2018. Mud volcanoes of the world: Classifications, activities and environmental hazard (informational-analytical review). Eur. J. Nat. Hist.12-26.
  • 5. Barsi, J.A., Alhammoud, B., Czapla-Myers, J., Gascon, F., Haque, M.O., Kaewmanee, M., Leigh, L., Markham, B.L., 2018. Sentinel-2A MSI and Landsat-8 OLI radiometric cross comparison over desert sites. Eur. J. Remote Sens. https://doi.org/10.1080/22797254.2018.1507613
  • 6. Baselice, F., Ferraioli, G., 2013. Unsupervised Coastal Line Extraction From SAR Images. IEEE Geosci. Remote Sens. Lett. 10, 1350-1354. https://doi.org/10.1109/LGRS.2013.2241013
  • 7. BBC News", 2021. Azerbaijan mud volcano triggers huge blast in Caspian oil and gas fields [WWW Document]. https://www.bbc.com/news/world- europe- 57722236 (accessed 7.28.21).
  • 8. Berrisford, P., Dee, D.P., Poli, P., Brugge, R., Fielding, M., Fuentes, M., Kr allberg, P.W., Kobayashi, S., Uppala, S., Simmons, A., 2011. The ERA-Interim archive Version 2.0. Reading, Shinfield Park.
  • 9. Bouchra, A., Mustapha, H., Mohammed, R., 2020. D-InSAR Analysis of Sentinel-1 Data for Landslide Detection in Northern Morocco, Case Study: Chefchaouen. J. Geosci. Environ. Protect. 08, 84-103. https://doi.org/10.4236/gep.2020.87005
  • 10. Browne, E., 2021. What Is a Mud Volcano? Huge Explosion Rocks Oil-Rich Caspian Sea [WWW Document]. https://www.D.Ghaderi and M.Rahbaninewsweek.com/what-mud-volcano-explained-huge-explosion-fire-caspian-sea-oil-1606877 (accessed 7.28.21).
  • 11. Dimitrov, L.I., 2002. Mud volcanoes—the most important pathway for degassing deeply buried sediments. Earth Sci. Rev. 59, 49-76. https://doi.org/10.1016/S0012-8252(02)00069-7
  • 12. Do, A.T.K., Vries, S.de, Stive, M.J.F., 2019. The Estimation and Evaluation of Shoreline Locations, Shoreline-Change Rates, and Coastal Volume Changes Derived from Landsat Images. J. Coastal Res. 35, 56. https://doi.org/10.2112/JCOASTRES-D-18-00021.1
  • 13. Dyakonov, G., 2020. High-resolution data on mesoscale dynamics of the Caspian Sea upper layer, obtained in a numerical reconstruction [WWW Document]. Mendeley Data. https://doi.org/10.17632/st2grwnhmv.1
  • 14. Dyakonov, G.S., Ibrayev, R.A., 2020. High-resolution data on mesoscale dynamics of the Caspian Sea upper layer, obtained in a numerical reconstruction. Data Brief. 30, 105368. https://doi.org/10.1016/j.dib.2020.105368
  • 15. Edalat, A., Khodaparast, M., Rajabi, A.M., 2020. Detecting Land Subsidence Due to Groundwater Withdrawal in Aliabad Plain, Iran, Using ESA Sentinel-1 Satellite Data. Nat. Resour. Res. 29, 1935-1950. https://doi.org/10.1007/s11053-019-09546-w
  • 16. Elhag, M., Bahrawi, J.A., 2019. Sedimentation mapping in shallow shoreline of arid environments using active remote sensing data. Nat. Hazard. 99, 879-894. https://doi.org/10.1007/s11069-019-03780-4
  • 17. ESA, 2021. Expectation maximization (em) cluster analysis. [WWW Document]. ESA. https://www.brockmann-consult.de/beam/doc/help/clusteranalysis/EM.html
  • 18. ESA, 2020. Copernicus Open Access Hub of the ESA [WWW Document]. https://scihub.copernicus.eu/ (accessed 8.2.20).
  • 19. Gascon, F., Bouzinac, C., Thépaut, O., Jung, M., Francesconi, B., Louis, J., Lonjou, V., Lafrance, B., Massera, S., Gaudel-Vacaresse, A., Languille, F., Alhammoud, B., Viallefont, F., Pflug, B., Bieniarz, J., Clerc, S., Pessiot, L., Trémas, T., Cadau, E., De Bonis, R., Isola, C., Martimort, P., Fernandez, V., 2017. Copernicus Sentinel-2A calibration and products validation status. Remote Sens https://doi.org/10.3390/rs9060584
  • 20. Ghaderi, D., Rahbani, M., 2020. Shoreline change analysis along the coast of Bandar Abbas city, Iran using remote sensing images. Int. J. Coastal Offshore Eng. 4, 51-64.
  • 21. Guliev, I., Panahi, B., 2004. Geodynamics of the deep sedimentary basin of the Caspian Sea region: paragenetic correlation of seismicity and mud volcanism. Geo-Mar. Lett. 24, 169-176. https://doi.org/10.1007/s00367-004-0174-1
  • 22. Hanssen, R.F., 2001. Radar Interferometry, Remote Sensing and Digital Image Processing. Dordrecht, Springer Netherlands, 308 pp. https://doi.org/10.1007/0-306-47633-9
  • 23. Islam, M.S., Uddin, M.A., Hossain, M.A., 2021. Assessing the dynamics of land cover and shoreline changes of Nijhum Dwip (Island) of Bangladesh using remote sensing and GIS techniques. Reg. Stud. Mar. Sci. 41, 101578. https://doi.org/10.1016/j.rsma.2020.101578
  • 24. Kopf, A.J. , 2002. SIGNIFICANCE OF MUD VOLCANISM. Rev. Geophys. 40, 2-1-2-52. https://doi.org/10.1029/2000RG000093
  • 25. Long, T., Jiao, W., He, G., Wang, W., 2014. Automatic Line Segment Registration Using Gaussian Mixture Model and Expectation-Maximization Algorithm. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7, 1688-1699. https://doi.org/10.1109/JSTARS.2013.2273871
  • 26. Manga, M., Brodsky, E., 2006. SEISMIC TRIGGERING OF ERUPTIONS IN THE FAR FIELD: Volcanoes and Geysers. Annu. Rev. Earth Planet. Sci. 34, 263-291. https://doi.org/10.1146/annurev.earth.34.031405.125125
  • 27. Manga, M., Brumm, M., Rudolph, M.L., 2009. Earthquake triggering of mud volcanoes. Mar. Pet. Geol. 26, 1785-1798. https://doi.org/10.1016/j.marpetgeo.2009.01.019
  • 28. Mazzini, A., Akhmanov, G., Manga, M., Sciarra, A., Huseynova, A., Huseynov, A., Guliyev, I., 2021. Explosive mud volcano eruptions and rafting of mud breccia blocks. Earth Planet. Sci. Lett. 555, 116699.
  • 29. Mazzini, A., Etiope, G., 2017. Mud volcanism: An updated review. Earth Sci. Rev. 168, 81-112. McFEETERS, S.K., 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 17, 1425-1432. https://doi.org/10.1080/01431169608948714
  • 30. Moser, G., 2002. Unsupervised change-detection methods for remote-sensing images. Opt. Eng. 41, 3288. https://doi.org/10.1117/1.1518995
  • 31. Müller, H.E.J., 2019. The Mud Volcanoes of Azerbaijan—a Potential UNESCO World Heritage Site. World Heritage Watch Report 28.
  • 32. Novellino, A., Engwell, S.L., Grebby, S., Day, S., Cassidy, M., Madden-Nadeau, A., Watt, S., Pyle, D., Abdurrachman, M., Edo Marshal Nurshal, M., Tappin, D.R., Andri Kurniawan, I., Hunt, J., 2020. Mapping Recent Shoreline Changes Spanning the Lateral Collapse of Anak Krakatau Volcano, Indonesia. Appl. Sci. 10, 536536. https://doi.org/10.3390/app10020536
  • 33. Odonne, F., Imbert, P., Dupuis, M., Aliyev, A.A., Abbasov, O.R., Baloglanov, E.E., Vendeville, B.C., Gabalda, G., Remy, D., Bichaud, V., Juste, R., Pain, M., Blouin, A., Dofal, A., Gertauda, M., 2020. Mud volcano growth by radial expansion: Examples from onshore Azerbaijan. Mar. Pet. Geol. 112, 104051. https://doi.org/10.1016/j.marpetgeo.2019.104051
  • 34. Patrick, M., Dean, K., Dehn, J., 2004. Active mud volcanism observed with Landsat 7 ETM+. J. Volcanol. Geotherm. Res. 131, 307-320. https://doi.org/10.1016/S0377-0273(03)00383-4
  • 35. Pereira-Sandoval, M., Ruescas, A., Urrego, P., Ruiz-Verdú, A., Delegido, J., Tenjo, C., Soria-Perpinyà, X., Vicente, E., Soria, J., Moreno, J., 2019. Evaluation of Atmospheric Correction Algorithms over Spanish Inland Waters for Sentinel-2 Multi Spectral Imagery Data. Remote Sens. 11, 1469. https://doi.org/10.3390/rs11121469
  • 36. Pôssa, É.M., Maillard, P., Gomes, M.F., Silva, I., Leão, G., 2018. On water surface delineation in rivers using Landsat-8, Sentinel-1 and Sentinel-2 data. In: Neale, C.M., Maltese, A. (Eds.), Proc. SPIE Oct. SPIE, 45. https://doi.org/10.1117/12.2325725
  • 37. Rapoport, A.J., Tjokrosapoetro, S., Charlton, T.R., 1986. Mud Volcanoes, Shale Diapirs, Wrench Faults, and Melanges in Accretionary Complexes, Eastern Indonesia. Am. Assoc. Pet. Geol. Bull. 70. https://doi.org/10.1306/94886CA9-1704-11D7-8645000102C1865D
  • 38. Rosenfield, G.H., Fitzpatrick-Lins, K., 1986. A coefficient of agreement as a measure of thematic classification accuracy. Photogramm. Eng. Remote Sens. 52, 223-227.
  • 39. Schweder, G., 1893. Über Schlammvulkane und Inselbildung im Kaukasus und Kaspisee. Korr. Blatt. Nat. Ver. Riga, XXXVI 41-42.
  • 40. Soria, X., Delegido, J., Urrego, E.P., Pereira-Sandoval, M., Vicente, E., Ruiz-Verdu, A., Soria, J.M., Peña, R., Tenjo, C., Moreno, J., 2017. Validación de algoritmos para la estimación de la clorofila-a con Sentinel-2 en la Albufera de València. In: Proceedings of the XVII. Congreso de La Asociación Española de Teledetección, 289-292.
  • 41. Spinosa, A., Ziemba, A., Saponieri, A., Damiani, L., El Serafy, G., 2021. Remote Sensing-Based Automatic Detection of Shoreline Position: A Case Study in Apulia Region. J. Mar. Sci. Eng. 9, 575. https://doi.org/10.3390/jmse9060575
  • 42. Su, L., Gong, M., Sun, B., Jiao, L., 2014. Unsupervised change detection in SAR images based on locally fitting model and semi-EM algorithm. Int. J. Remote Sens. 35, 621-650. https://doi.org/10.1080/01431161.2013.871596
  • 43. Taha, L.G.E., Elbeih, S.F., 2010. Investigation of fusion of SAR and Landsat data for shoreline super resolution mapping: the north-eastern Mediterranean Sea coast in Egypt. Appl. Geomatics. 2, 177-186. https://doi.org/10.1007/s12518-010-0033-x
  • 44. The Guardian, 2021. Azerbaijan says ‘mud volcano’ caused Caspian Sea explosion [WWW Document]. https://www.theguardian.com/world/2021/jul/05/explosion-rocks-caspian-sea-near-azerbaijan-gas-field accessed 7.28.21).
  • 45. United States Geological Survey, 2020. EarthExplorer [WWW Document]. https://earthexplorer.usgs.gov/ (accessed 8.2.20).
  • 46. Yen, N.H., Kim, T.L.T., 2020. Coastline changes detection from Sentinel—1 satellite imagery using spatial fuzzy clustering and in-eractive thresholding method in Phan Thiet, Binh Thuan. Vietnam J. Hydrometeorology 1-10.
  • 47. Zollini, S., Alicandro, M., Cuevas-González, M., Baiocchi, V., Dominici, D., Buscema, P.M., 2019. Shoreline Extraction Based on an Active Connection Matrix (ACM) Image Enhancement Strategy. J. Mar. Sci. Eng. 8, 9. https://doi.org/10.3390/jmse8010009
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4f6b3f8b-6850-468c-8482-a29e41f7244d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.