Czasopismo
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
This article analyses the effects of deformation on the structure of CMnSi steel at various deformation levels. After hot forging, the structure of CMnSi steel comprises coarse-sized alpha and pearlite particles. The average grain size of steel after forging was 100 μm. After hot rolling, the grain size gradually decreases, with the average size of the ferrite and pearlite grains measured as 60 μm. After that, CMnSi steel was subjected to cold deformation at levels of 40%, 60%, and 80%. The grain size of the CMnSi steel sample after 80% cold deformation reached level 7, corresponding to about 25 μm. For a deformation level of 40%, the grain size was level 5, corresponding to 40 μm, while a deformation level of 60% produced a grain size of 35 μm, corresponding to level 6. In addition, scanning electron microscopy showed that after 80% deformation, smaller particles with a size of about 5 μm appear inside the parent particles. Moreover, energy-dispersive X-ray spectroscopy analysis revealed the carbide appearance in the form M23C6, with M being a mixture of Fe and Mn. These carbides have a fine size of about 1–2 μm and contribute to the prevention of particle growth during subsequent heat treatments.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
135--141
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam
autor
- School of Mechanical Engineering, Vietnam Maritime University, Haiphong, Viet Nam, 0000-0002-5307-7509
autor
- Gdansk University of Technology, Institute of Naval Architecture, Gdansk, Poland
autor
- PATET Research Group, Ho Chi Minh city University of Transport, Ho Chi Minh city, Viet Nam
autor
- PATET Research Group, Ho Chi Minh city University of Transport, Ho Chi Minh city, Viet Nam, dinhtuyen.nguyen@ut.edu.vn
Bibliografia
- 1. Abid M, Kchaou M, Hoang AT, Haboussi M. Wear Mechanisms Analysis and Friction Behavior of Anodic Aluminum Oxide Film 5083 under Cyclic Loading. J Mater Eng Perform 2024;33:1527–1537. https://doi.org/10.1007/s11665-023-08616-8.
- 2. George JS, Vijayan P P, Hoang AT, Kalarikkal N, Nguyen-Tri P, Thomas S. Recent advances in bio-inspired multifunctional coatings for corrosion protection. Prog Org Coatings 2022;168:106858. https://doi.org/10.1016/j.porgcoat.2022.106858.
- 3. Hoang AT, Tran TT Van, Nguyen VB, Nguyen DN. Effect of Heat Treatment Process on The Microstructure and Mechanical Properties of The Spray Coating Ni-Cr on CT38 Steel. Int J Adv Sci Eng Inf Technol 2019;9:560–568. https://doi.org/10.18517/ijaseit.9.2.7891.
- 4. Thi H, Quyen N, Tuan VA, Dong TP, Quyen VV, Nam ND. Effect of Rare Earth on M7C3 Eutectic Carbide in 13 % Chromium Alloy Cast Iron. Int J Adv Sci Eng Inf Technol 2019;9:724–728.
- 5. Liu D, Li Q, Emi T. Microstructure and mechanical properties in hot-rolled extra high-yield-strength steel plates for offshore structure and shipbuilding. Metall Mater Trans A 2011;42:1349–1361.
- 6. Wang S, Dai J, Wang J, Li R, Wang J, Xu Z. Numerical calculation of high-strength-steel saddle plate forming suitable for lightweight construction of ships. Materials (Basel) 2023;16:3848.
- 7. Backman J, Kyllonen V, Helaakoski H. Methods and tools of improving steel manufacturing processes: Current state and future methods. IFAC-PapersOnLine 2019;52:1174–9.
- 8. Geng X, Wang F, Wu H, Wang S, Wu G, Gao J, et al. Datadriven and artificial intelligence accelerated steel material research and intelligent manufacturing technology. Mater Genome Eng Adv 2023;1:e10.
- 9. Kučerova L, Jirkova H, Mašek B. Continuous Cooling of CMnSi TRIP Steel. Mater Today Proc 2015;2:S677–680. https://doi.org/10.1016/j.matpr.2015.07.374.
- 10. Feng X, Liu X, Bai S, Tang Y, Ye Y. Investigation of dynamic tensile mechanical responses and deformation mechanism at high strain rates in a TWIP steel. J Mater Res Technol 2023;26:639–653. https://doi.org/10.1016/j.jmrt.2023.07.241.
- 11. Mintz B, Qaban A, Kang SE. The Influence of Small Additions of Alloying Elements on the Hot Ductility of AHSS Steels: A Critical Review Part 2. Metals (Basel) 2023;13:406.
- 12. Chen Z, Gu J, Han L. Bainite Transformation Characteristics of High-Si Hypereutectoid Bearing Steel. Metallogr Microstruct Anal 2018;7. https://doi.org/10.1007/s13632-017-0410-5.
- 13. Hasan SM, Kumar S, Chakrabarti D, Singh SB. Effect of prior austenite grain size on the formation of carbide-free bainite in low-alloy steel. Philos Mag 2020;100. https://doi.org/10.1080/14786435.2020.1764653.
- 14. Leach L. Modeling Bainite Formation in Steels. KTH Royal Institute of Technology; 2018.
- 15. Morawiec M, Ruiz-Jimenez V, Garcia-Mateo C, Grajcar A. Thermodynamic analysis and isothermal bainitic transformation kinetics in lean medium-Mn steels. J Therm Anal Calorim 2020;142:1709–1719. https://doi.org/10.1007/s10973-020-10259-z.
- 16. Rodrigues KF, Mourao GMM, Faria GL. Kinetics of Isothermal Phase Transformations in Premium and Standard Rail Steels. Steel Res Int 2021;92. https://doi.org/10.1002/srin.202000306.
- 17. Hendi SH, Panahiyan S, Panah BE, Jamil M. Alternative approach to thermodynamic phase transitions. Chinese Phys C 2019;43. https://doi.org/10.1088/1674-1137/43/11/113106.
- 18. Park J, Min KM, Kim H, Hong S, Lee M. Integrated Computational Materials Engineering for Advanced Automotive Technology: With Focus on Life Cycle of Automotive Body Structure. Adv Mater Technol 2023;8. https://doi.org/10.1002/admt.202201057.
- 19. Nguyen VN, Nguyen AX, Nguyen DT, Le HC, Nguyen VP. A Comprehensive Understanding of Bainite Phase Transformation Mechanism in TRIP Bainitic-supported Ferrite Steel. Int J Adv Sci Eng Inf Technol 2024;14:309–325. https://doi.org/10.18517/ijaseit.14.1.19706.
- 20. Van HD, Van CN, Ngoc TT, Manh TS. Influence of heat treatment on microstructure and mechanical properties of a CMnSi TRIP steel using design of experiment. Mater Today Proc 2018;5:24664–24674. https://doi.org/10.1016/j.matpr.2018.10.264.
- 21. Fu YT, Liu J, Shi J, Cao WQ, Dong H. Effects of Cold Rolling Reduction on Retained Austenite Fraction and Mechanical Properties of High-Si TRIP Steel. J Iron Steel Res Int 2013;20:50–56. https://doi.org/10.1016/S1006-706X(13)60097-7.
- 22. Srivastava AK, Jha G, Gope N, Singh SB. Effect of heat treatment on microstructure and mechanical properties of cold rolled C-Mn-Si TRIP-aided steel. Mater Charact 2006;57:127–135. https://doi.org/10.1016/j.matchar.2006.01.010.
- 23. Zhu R, Li S, Karaman I, Arroyave R, Niendorf T, Maier HJ. Multi-phase microstructure design of a low-alloy TRIPassisted steel through a combined computational and experimental methodology. Acta Mater 2012;60:3022–3033. https://doi.org/10.1016/j.actamat.2012.02.007.
- 24. Sierra R, Nemes JA. Investigation of the mechanical behaviour of multi-phase TRIP steels using finite element methods. Int J Mech Sci 2008;50:649–665. https://doi.org/10.1016/j.ijmecsci.2008.01.005.
- 25. Tian Y, Li Z. Effects of Warm Deformation on Mechanical Properties of TRIP Aided Fe-C-Mn-Si Multiphase Steel. J Iron Steel Res Int 2012;19:47–52. https://doi.org/10.1016/S1006-706X(12)60126-5.
- 26. Park HS, Han JC, Lim NS, Park CG. Nano-scale observation on the transformation behavior and mechanical stability of individual retained austenite in CMnSiAl TRIP steels. Mater Sci Eng A 2015;627:262–269. https://doi.org/10.1016/j.msea.2015.01.005.
- 27. Wang ZC, Kim SJ, Lee CG, Lee TH. Bake-hardening behawior of cold-rolled CMnSi and CMnSiCu TRIP-aided steel sheets. J Mater Process Technol 2004;151:141–145. https://doi.org/10.1016/j.jmatprotec.2004.04.029.
- 28. Chen XX, Shen J, Kecskes LJ, Wei Q. Tungsten-based heterogeneous multilayer structures via diffusion bonding. Int J Refract Met Hard Mater 2020;92:105308. https://doi.org/10.1016/j.ijrmhm.2020.105308.
- 29. Kliber J, Mašek B, Zacek O, Staňkova H. Transformation Induced Plasticity (TRIP) Effect Used in Forming of Carbon CMnSi Steel. Mater Sci Forum 2005;500–501:461–470. https://doi.org/10.4028/www.scientific.net/msf.500-501.461.
- 30. De Cooman BC. Structure–properties relationship in TRIP steels containing carbide-free bainite. Curr Opin Solid State Mater Sci 2004;8:285–303.
- 31. Fu B, Yang W, Li L, Sun Z. Effect of carbon content on microstructure and mechanical properties of cold-rolled C-Mn-Al-Si trip steel. Jinshu Xuebao/Acta Metall Sin 2013;49. https://doi.org/10.3724/SP.J.1037.2012.00656.
- 32. Hien D Van. Influence of thermal-mechanical on microstructure and mechanical of TRIP CMnSi steel from foam-iron. Institute of Military Science and Technology, 2018.
- 33. Wang S, Cao L, Zhang Z. Influence of Carbide Morphology on the Deformation and Fracture Mechanisms of Spheroidized 2019:1–11.
- 34. Hojo T, Kobayashi J, Kajiyama T, Sugimoto K. Effects of Alloying Elements on Impact Properties of Ultra High-Strength TRIP-Aided Bainitic Ferrite Steels n.d.:9–16.
- 35. Kowalski J, Kozak J. Numerical model of plastic destruction of thick steel structural elements. Polish Marit Res 2018; 25:78–84.
- 36. Gu J, Fernandes AC, Chai W, Bu SX, Han X. Analytical and Experimental Investigation of Asymmetric Floating Phenomena of Uniform Bodies. Polish Marit Res 2024; 31:16–23. https://doi.org/doi:10.2478/pomr-2024-0002.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4f4cd3ba-caed-441c-a99c-596f12768882