Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | Vol. 46, nr 4 | 655--662
Tytuł artykułu

Hermite-Hadamard inequalities for convex set-valued functions

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The following version of the weighted Hermite-Hadamard inequalities for set-valued functions is presented: Let Y be a Banach space and F : [a, b]→cl(Y) be a continuous set-valued function. If F is convex, then (…) , where μ is a Borel measure on [a, b] and xμ is the barycenter of on [a, b]. The converse result is also given.
Wydawca

Rocznik
Strony
655--662
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
  • Department of Mathematics, University of Craiova, Street A. I. Cuza 13, 2000585 Craiova, Romania, fcmitroi@yahoo.com
autor
  • Department of Mathematics and Computer Science, University of Bielsko-Biała, ul. Willowa 2, 43-309 Bielsko-Biała, Poland, knikodem@ath.bielsko.pl
  • Department of Mathematics and Computer Science, University of Bielsko-Biała, ul. Willowa 2, 43-309 Bielsko-Biała, Poland, swasowicz@ath.bielsko.pl
Bibliografia
  • [1] M. Bessenyei, Zs. Páles, Characterization of convexity via Hadamard’s inequality, Math. Inequal. Appl. 9(1) (2006), 53–62.
  • [2] S. S. Dragomir, C. E. M. Pearce, Selected Topics on Hermite–Hadamard Inequalities and Applications,RGMIA Monographs, Victoria University, 2002. (online: http://rgmia.vu.edu.au/monographs/).
  • [3] S. Hu, N. S. Papageorgiou, Handbook of Multivalued Analysis. Vol.I: Theory, Kluwer Acad. Publ., Dordrecht, Boston, London, 1997.
  • [4] J. Matkowski, K. Nikodem, An integral Jensen inequality for convex multifunctions, Results Math. 26 (1994), 348–353.
  • [5] D. S. Mitrinović, L. B. Lacković, Hermite and convexity, Aequationes Math. 28 (1985), 229–232.
  • [6] C. P. Niculescu, L. -E. Persson, Convex Functions and their Applications. A Contemporary Approach, CMS Books in Mathematics vol. 23, Springer-Verlag, New York, 2006.
  • [7] K. Nikodem, K-convex and K-concave set–valued functions, Zeszyty Nauk. Politech. Łódz. Mat. 559; Rozprawy Mat. 114., Łódź, 1989.
  • [8] J. E. Pečarić, F. Proschan, Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Acad. Press, Inc., Boston, 1992.
  • [9] B. Piątek, On convex and *-concave multifunctions, Ann. Polon. Math. 86 (2005), 165–170.
  • [10] S. Rolewicz, Functional Analysis and Control Theory. Linear Systems, PWN – Polish Scientific Publishers & D. Reidel Publishing Company, Dordrecht/Boston/Lancaster/Tokyo, 1987.
  • [11] E. Sadowska, Hadamard inequality and a refinement of Jensen inequality for set-valued functions, Results Math. 32 (1997), 332–337.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4edcce57-ac2d-43d8-bc54-ee02008f7c69
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.