Czasopismo
2023
|
Vol. 68, iss. 4
|
1267--1273
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
The most commonly quenching process for carburizing gears is the oil-quenching (OQ) and salt-quenching (SQ), and finite analysis and comparison of OQ and SQ on the carburizing gear ring were performed. Wherein, the accurate simulation of gear carburization was obtained by the alloying element coefficient for diffusion coefficient and experiment validation. The heat transfer coefficients measured by the inverse heat transfer method was used to the temperature simulation, and the gear distortion mechanism was analyzed by the simulated results. By the comparison of OQ, SQ had higher cooling capacity in the high temperature region and slow cooling rate in the temperature range where martensite transformation occurs. The martensite transformation was more sufficient, and the compressive stress of the tooth was greater in the SQ. The tooth showed a drum-shaped and slight saddle-shaped distortion in the OQ and SQ, respectively. The simulated distortion results have good consistency with the measured results, and the SQ distortion was more uniform and stable based on the measured results.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
1267--1273
Opis fizyczny
Bibliogr. 14 poz., fot., rys., tab., wzory
Twórcy
autor
- Henan University of Engineering, Mechanical Engineering College, Zhengzhou, Henan 451191 China, haiyang630@163.com
autor
- Henan University of Engineering, Mechanical Engineering College, Zhengzhou, Henan 451191 China
Bibliografia
- [1] J.G. Chen, Research of Distortion Control for Carburized Quenching Gear, Journal of Mechanical Transmisssion 38 (5), 152-156 (2014). DOI: https://doi.org/10.16578/j.issn.1004.2539. 2014.05.002
- [2] S. Raygan, J. Rassizadehghani, M. Askari, Comparison of Microstructure and Surface Properties of AISI 1045 Steel After Quenching in Hot Alkaline Salt Bath and Oil, Journal of Materials Engineering & Performance 18 (2), 168-173 (2009). DOI: https://doi.org/10.1007/s11665-008-9273-x
- [3] T. Sugimoto, M. Qin, Y. Watanabe, Computational Study of Gas Quenching on Carburizing Hypoid Ring Gear, B. H. M. 151, 451-461 (2006). DOI: https://doi.org/10.1007/BF03165207
- [4] L. Zhang, A.X. Wang, M. Gu, B.K. Li, Q.L. Zhu, Martempering in Molten Nitrate and Oil Quenching Processes of 17CrNiMo6 Steel Carburized Gear, Heat Treatment of Metals 41 (2), 146-149 (2016). DOI: https://doi.org/10.13251/j.issn.0254-6051.2016.02.034
- [5] X. Wang, B.K. Li, M. Gu, S.X. Li, Distortion Control of Large Carburized Gear Shaft Based on Finite Element Analysis, Heat Treatment of Metals 44 (4), 239-242 (2019). DOI: https://doi.org/10.13251/j.issn.0254-6051.2019.04.048
- [6] X.M. Gu, L.B. Lü, J.W. Liu, Effect of Salt Bath Quenching After Carburizing on Microstructure and Property of 18Cr2Ni4W Steel, Heat Treatment of Metals 42 (5), 184-188 (2017). DOI: https://doi.org/10.13251/j.issn.0254-6051.2017.05.038
- [7] N.K. Kim, K.Y. Bae, Analysis of Deformation in the Carburizing-quenching Heat Treatment of Helical Gears Made of SCM415H Steel, International Journal of Precision Engineering and Manufacturing 16 (1), 73-79 (2015). DOI: https://doi.org/10.1007/s12541-015-0009-1
- [8] X. Zhang, J.Y. Tang, Key Technology in Carburizing Process Simulation for 17CrNiMo6 Steel Annular Gear, Heat Treatment of Metals 40 (3), 185-189 (2015). DOI: https://doi.org/10.13251/j.issn.0254-6051.2015.03.042
- [9] D.W. Kim, Y.G. Cho, H.H. Cho, S.H. Kim, W.B. Lee, M.G. Lee, H.N. Han, A Numerical Model for vacuum Carburization of an Automotive Gear Ring, Metals & Materials International 17 (6), 885-890 (2011). DOI: https://doi.org/10.1007/s12540-011-6004-x
- [10] A. Sugianto, M. Narazaki, M. Kogawara, Distortion Analysis of Axial Contraction of Carburized-quenched Helical Gear, Journal of Materials Engineering and Performance 19 (2), 194-206 (2010). DOI: https://doi.org/10.1007/s11665-009-9476-9
- [11] X. Wang, B.K. Li, M. Gu, Simulation Analysis on Martempering in Salt Bath Technology for Carburized Distortion Sample, Metallurgical & Materials Transactions A 50 (2), 3758-3766 (2019). DOI: https://doi.org/10.1007/s11661-019-05277-y
- [12] A. Sugianto, M. Narazaki, M. Kogawara, A. Shirayori, S.Y. Kim, S. Kubota, Numerical Simulation and Experimental Verification of Carburizing-quenching Process of SCr420H Steel Helical Gear, Journal of Materials Processing Tech. 209 (7), 3597-3609 (2009). DOI: https://doi.org/10.1016/j.jmatprotec.2008.08.017
- [13] Y. Liu, S.W. Qin, Q.G. Hao, N.L. Chen, X.W. Zuo, Y.H. Rong, Finite Element Simulation and Experimental Verification of Internal Stress of Quenched AISI 4140 Cylinders, Metallurgical & Materials Transactions A 48 (3), 1402-1413 (2017). DOI: https://doi.org/10.1007/s11661-016-3916-6
- [14] X. Zhang, J.Y. Tang, X.R. Zhang, An Optimized Hardness Model for Carburizing-quenching of Low Carbon Alloy Steel, J. Cent. South Univ. 24 (1), 9-16 (2017). DOI: https://doi.org/10.1007/s11771-017-3403-2
Uwagi
This work was supported by the Doctor Cultivation Fund of Henan University of Engineering (D2020004) and Science and Technology Research
Project of Henan Province (232102220041).
Project of Henan Province (232102220041).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4eb48c0d-a2f5-4a90-93a8-e4ca5b36d51b