Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | z. 174 | 387--402
Tytuł artykułu

Using high-tech tools for consumer buying decisions of FMCG

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The main aim of this paper is to explore consumer decisions and emotions during shopping at the self-service store with fast-moving consumer goods (FMCG). Design/methodology/approach: The subject of the study is to assess the impact of emotions during the choice-making process on consumers' buying decisions. The respondents are citizens of the West Pomeranian region, Poland. The survey was conducted using state-of-the-art data acquisition technologies, i.e., Virtual Reality and EEG. An interview was also used as a complementary form. The research was both qualitative and quantitative, with a research sample of 34 respondents and took place in the virtual world. The researchers used primary data. The results presented here are part of a broader research project that used a triangulation of research methods to allow a deeper analysis of the conscious and unconscious aspects of the subjects. Findings: The research provided independent data on consumer emotions. The authors identified 4 groups of emotions that appeared during the selection of a product and were highly differentiated and strongly dependent on such characteristics as consumer type and gender. It has also been noticed that the longer a product is held, the lower emotional “sleepiness’. Research limitations/implications: One of the main limitations is the data collection process, which is relatively expensive, so the sample size is limited. The results obtained can be a signpost for a researcher who would like to use this new technology for further research. Practical implications: The results obtained can be used by shop managers in planning the sales activities or shop space to help the customer decide. Originality/value: In the research was used an innovative combination of virtual reality (VR) equipment and an electroencephalogram (EEG). To the best of the authors' knowledge, the results of a study from the FMCG industry using both devices simultaneously have never been published.
Wydawca

Rocznik
Tom
Strony
387--402
Opis fizyczny
Bibliogr. 39 poz.
Twórcy
Bibliografia
  • 1. Alalwan, A.A., Rana, N.P., Dwivedi, Y.K., Algharabat, R. (2017). Social media in marketing: A review and analysis of the existing literature. Telematics and Informatics, 34(7), 1177-1190.
  • 2. Barkana, B.D., Ozkan, Y., Badara, J.A. (2022). Analysis of working memory from EEG signals under different emotional states. Biomedical Signal Processing and Control, 71, 103249. https://doi.org/10.1016/j.bspc.2021.103249.
  • 3. Beniczky, S., Schomer, D.L. (2020). Electroencephalography: Basic biophysical and technological aspects important for clinical applications. Epileptic Disorders, 22(6), 697¬715. https://doi.org/10.1684/epd.2020.1217.
  • 4. Biercewicz, K., Chrąchol-Barczyk, U., Duda, J., Wiścicka-Fernando, M. (2022). Modern Methods of Sustainable Behaviour Analysis—The Case of Purchasing FMCG. Sustainability, 14(20), Art. 20. https://doi.org/10.3390/su142013387.
  • 5. Bouzakraoui, M., Sadiq, A., Enneya, N. (2017). A Customer Emotion Recognition through Facial Expression using POEM descriptor and SVM classifier, p. 6. https://doi.org/10.1145/3090354.3090436.
  • 6. Brzozowska-Woś, M. (2010). Marketing. Ujęcie relacyjne, T. 1. https://d1wqtxts1xzle7. cloudfront.net/35352825/Marketing_-_Ujecie_relacyjne-with-cover-page- v2.pdf?Expires=1668728912&Signature=DrjPlr~Db4Nvs9hqdND7pG9hHqG9wUy21Ghl Y~KnaUlAFaS8kTXPxQM8vQaZdFvAjVcLIIccUhTzD2va9Rsw8OFROh5NjkRoIKMz gscfdIe7SdcKSOcaZ96xHWERMi9YO3vpXoIJ2McvCInpzzKCv7lQoFeG6cD0xGBMpd 5QyvKk0fvqIVMcEQ-d6eG7j6Ckr3ObU5CpuqbBQrJ7cOKdUJ6um3ZyOsz4af4qtZ5z KALTXLlF0yBD0WbR0S8QqcOc9gVq7rLR3lM7ewLNyxO6ykJYvhv6fStwx2lJ1i1zP~ OoNFHco-vrThYZnNR1kAMMk2zFRSGFvpIj~7KCXzowTQ__&Key-Pair- Id=APKAJLOHF5GGSLRBV4ZA#page=31.
  • 7. Cacioppo, J.T., Tassinary, L.G., Berntson, G.G. (eds.) (2016). Handbook of Psychophysiology. Cambridge University Press. https://doi.org/10.1017/9781107415782.
  • 8. Davidson, R. J. (2004). What does the prefrontal cortex „do” in affect: Perspectives on frontal EEG asymmetry research. Biological Psychology, 67(1-2), Art. 1-2. https://doi.org/10.1016/j.biopsycho.2004.03.008.
  • 9. Dimitrakopoulos, G., Uden, L., Varlamis, I. (2020). Chapter 5—Co-creation of value for user experiences. In: G. Dimitrakopoulos, L. Uden, I. Varlamis (eds.), The Future of Intelligent Transport Systems (pp. 63-77). Elsevier. https://doi.org/10.1016/B978-0-12- 818281-9.00005-X.
  • 10. Dooley, R. (2015). Neuromarketing. 100 szybkich, łatwych i tanich sposobów na przekonanie klienta (I). Warszawa: PWN.
  • 11. Dulleck, U., Schaffner, M., Torgler, B. (2014). Heartbeat and Economic Decisions: Observing Mental Stress among Proposers and Responders in the Ultimatum Bargaining Game. PLoS ONE, 9(9), e108218. https://doi.org/10.1371/journal.pone.0108218.
  • 12. Gomes, O. (2005). Rational consumer choice. Comunicaçao Publica, Vol. 1, no. 2, https://doi.org/10.4000/cp.9182.
  • 13. Han, D.-I., Tom Dieck, M.C. (2019). Calling for user-centric VR design research in hospitality and tourism. Hospitality & Society, 9, 237-246. https://doi.org/10.1386/hosp.9.2.237_7.
  • 14. Haslam, S.A. (2007). I Think, Therefore I Err? Scientific American. https://doi.org/10.1038/scientificamericanmind0407-16.
  • 15. Lilly, J.M., Olhede, S.C. (2010). On the Analytic Wavelet Transform. IEEE Transactions on Information Theory, 56(8), 4135-4156. https://doi.org/10.1109/TIT.2010.2050935.
  • 16. Janoś-Kresło, M. (eds.). (2012). Gospodarstwa domowe w XXI. In: Konsumpcja, jakość życia. Szkoła Główna Handlowa.
  • 17. Jerath, K., Ren, Q. (2021). Consumer Rational (In)Attention to Favorable and Unfavorable Product Information, and Firm Information Design. Journal of Marketing Research, 58(2), 343-362. https://doi.org/10.1177/0022243720977830.
  • 18. Khan, A., Rezaei, S., Valaei, N. (2022). Social commerce advertising avoidance and shopping cart abandonment: A fs/QCA analysis of German consumers. Journal of Retailing and Consumer Services, 67, 102976. https://doi.org/10.1016/j.jretconser.2022.102976.
  • 19. Kuś, G. (2011). Decyzje zakupowe konsumentów a systemy komunikowania. Novae Res.
  • 20. Labott, S.M., Johnson, T.P., Fendrich, M., Feeny, N.C. (2013). Emotional Risks to Respondents in Survey Research: Some Empirical Evidence. Journal of Empirical Research on Human Research Ethics, 8(4), 53-66. https://doi.org/10.1525/jer.2013.8.4.53.
  • 21. Li, J., Jin, Y., Lu, S., Wu, W., Wang, P. (2020). Building environment information and human perceptual feedback collected through a combined virtual reality (VR) and electroencephalogram (EEG) method. Energy and Buildings, 224, 110259. https://doi.org/10.1016/j.enbuild.2020.110259.
  • 22. Lilly, J., Olhede, S. (2012). Generalized Morse Wavelets as a Superfamily of Analytic Wavelets. IEEE Transactions on Signal Processing, 60. https://doi.org/10.1109/TSP.2012.2210890.
  • 23. Loureiro, S.M.C., Guerreiro, J., Japutra, A. (2021). How escapism leads to behavioral intention in a virtual reality store with background music? Journal of Business Research, 134, 288-300. https://doi.org/10.1016/j.jbusres.2021.05.035.
  • 24. Matysik-Pejas, R., Szafrańska, M. (2011). The rationality of consumer behavior on the food products market. Delhi Business Review, 12(2), 11-19.
  • 25. MeiBner, M., Pfeiffer, J., Pfeiffer, T., Oppewal, H. (2019). Combining virtual reality and mobile eye tracking to provide a naturalistic experimental environment for shopper research. Journal of Business Research, 100, 445-458. https://doi.org/10.1016/j.jbusres. 2017.09.028.
  • 26. Moghaddasi, M., Marin-Morales, J., Khatri, J., Guixeres, J., Chicchi Giglioli, I.A., Alcaniz, M. (2021). Recognition of Customers’ Impulsivity from Behavioral Patterns in Virtual Reality. Applied Sciences, 11(10). https://doi.org/10.3390/app11104399.
  • 27. Moses, E., Beavin-Yates, L., Zaval, L., Hendrickson, K. (2018). The influence of an in-store gift on emotional arousal and shopper behavior.
  • 28. Niu, X., Wang, X., Liu, Z. (2021). When I feel invaded, I will avoid it: The effect of advertising invasiveness on consumers’ avoidance of social media advertising. Journal of Retailing and Consumer Services, 58, 102320.
  • 29. Pawle, J., Cooper, P. (2006). Measuring Emotion - Lovemarks, The Future Beyond Brands. Journal of Advertising Research, 46(1), 38-48. https://doi.org/10.2501/S0021849906060053.
  • 30. Petermans, A., Van Cleempoel, K., Nuyts, E., Vanrie, J. (2009). Measuring emotions in customer experiences in retail store environments. Testing the applicability of three emotion measurement instruments.
  • 31. Rahmanian, E. (2013). The role of emotion in consumer purchase behavior.
  • 32. Saha, S., Zhuang, G., Li, S. (2020). Will Consumers Pay More for Efficient Delivery? An Empirical Study of What Affects E-Customers’ Satisfaction and Willingness to Pay on Online Shopping in Bangladesh. Sustainability, 12, 1121. https://doi.org/10.3390/su12031121.
  • 33. Słupińska, K., Duda, J., Biercewicz, K. (2021). Planning an experiment in a virtual environment reality as a place of research on human behaviour using methods of neuroscience measurement - bibliometric analysis and methodological approach. Procedia Computer Science, 192, 3123-3133. https://doi.org/10.1016/j.procs.2021.09.085.
  • 34. Szymkowiak, A., Gaczek, P., Jeganathan, K., Kulawik, P. (2020). The impact of emotions on shopping behavior during epidemic. What a business can do to protect customers. Journal of Consumer Behaviour, 10.1002/cb.1853. PMC. https://doi.org/10.1002/cb.1853.
  • 35. Tsipouras, M.G. (2019). Spectral information of EEG signals with respect to epilepsy classification. EURASIP Journal on Advances in Signal Processing, 1, 10. https://doi.org/10.1186/s13634-019-0606-8.
  • 36. Unity Supermarket (2017). https://assetstore.unity.com/packages/3d/environments/urban/ supermarket-interior-with-lod-65917.
  • 37. Vecchiato, G., Astolfi, L., De Vico Fallani, F., Cincotti, F., Mattia, D., Salinari, S., Soranzo, R., Babiloni, F. (2010). Changes in Brain Activity During the Observation of TV Commercials by Using EEG, GSR and HR Measurements. Brain Topography, 23(2), Art. 2. https://doi.org/10.1007/s10548-009-0127-0.
  • 38. Wachowiak, M., Smolikova-Wachowiak, R., Johnson, M., Hay, D., Power, K., Williams- Bell, F. (2018). Quantitative feature analysis of continuous analytic wavelet transforms of electrocardiography and electromyography. Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences, 376, 20170250. https://doi.org/10.1098/rsta.2017.0250.
  • 39. Xu, T., Yin, R., Shu, L., Xu, X. (2019). Emotion Recognition Using Frontal EEG in VR Affective Scenes. IEEE MTT-S INTERNATIONAL MICROWAVE BIOMEDICAL CONFERENCE (IMBIOC 2019). IEEE.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4e9cdd44-1d30-4889-883c-fd3409cfbe66
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.