Warianty tytułu
Języki publikacji
Abstrakty
The aim of this paper is to present mathematical models of all the propulsion components of hybrid drivetrains. These models are based on very limited amounts of data, nevertheless they match real characteristics with high accuracy based on numerous measurement data points, thus they allow the modelling process of fuel and energy consumption for a particular vehicle in any homologation driving cycle to be performed in a very short time at the early stage of vehicle design. The characteristics provided in the article concern: the full load engine torque curve, full load electric motor power curve, combustion engine efficiency characteristic, including dynamic states and warm-up period, electric motor efficiency characteristic, inverter efficiency characteristic, battery characteristics in a wide temperature range and efficiency of the drivetrain. Moreover, the main principles concerning gear ratio selection are provided to conduct subsequent steps of transmission modelling from scratch. Simulations of drivetrain performance and vehicle fuel consumption in WLTP and US06 tests prove the suitability of the presented models.
Rocznik
Tom
Strony
305--328
Opis fizyczny
Bibliogr. 84 poz., fig., tab.
Twórcy
autor
- Department of Machine Design and Maintenance, Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Kraków, Poland, pbera@agh.edu.pl
Bibliografia
- [1] Dornoff J. CO2 emission standards for new passenger cars and vans in the European Union. International Council on Clean Transportation. May 2023.
- [2] Bielaczyc P., Woodburn J., Joshi A.A. Worldwide trends in powertrain system development in light of emissions legislation, fuels, lubricants and test methods. Combustion Engines 2021, 184(1), 57–71. https://doi.org/10.19206/CE-134785.
- [3] ACEA Position Paper, Views on proposals for Euro 7 emission standard. European Automobile Manufacturers Association. December 2020.
- [4] ICCT’s comments and technical recommendations on future Euro 7 emission standards. The International Council of Clean Transportation. Berlin, May 7, 2021.
- [5] Carney D. Toyota unveils more new gasoline ICEs with 40% thermal efficiency. SAE International. April 2018.
- [6] Wong V.W., Tung S.C. Overview of automotive engine friction and reduction trends – effects of surface, material, and lubricant-additive technologies. Friction 2016, 4(1), 1–28. https://doi.org/10.1007/s40544-016-0107-9.
- [7] Ding H., Cai C., Chen Z., Ke T., Mao B. Configuration synthesis and performance analysis of 9Speed automatic transmissions, Chinese Journal of Mechanical Engineering, June 2020. https://doi.org/10.1186/s10033-020-00466-y.
- [8] Yadav P., Shinde A., Gangurde Y., Patil P. Review on weight reduction in automobile, International Journal of Advanced Technology in Engineering and Science 2016, 4(1).
- [9] Mukut A.N.M.M.I., Abedin M.Z. Review on aerodynamics drag reduction of vehicles. International Journal of Engineering Materials and Manufacture 2019, 4(1), 1–14. https://doi.org/10.26776/ijemm.04.01.2019.01.
- [10] Sanguesa J.A., Torres-Sanz V., Garrido P., Martinez F.J., Marquez-Barja J.M. A review on electric vehicles: technologies and challenges. Smart Cities 2021, 4, 372–404. https://doi.org/10.3390/smartcities4010022.
- [11] Haddad A., Mannah M., Bazzi H. Nonlinear time-variant model of the PEM type fuel cell for automotive applications. Simulation Modelling Practice and Theory 2015, 51, 31–44. https://doi.org/10.1016/j.simpat.2014.11.002.
- [12] Rahma M.M., Kamil M., Bakar R.A. Engine performance and optimum injection timing for 4-cylinder direct injection hydrogen fueled engine. Simulation Modelling Practice and Theory 2011, 19, 734–751. https://doi.org/10.1016/jsimpat.2010.10.006.
- [13] Pevec D., Babic J., Carvalho A. Electric Vehicle Range Anxiety: An obstacle for the personal transportation Ievolution? 4th International Conference on Smart and Sustainable Technologies (SpliTech), 2019. https://doi.org/10.23919/ SpliTech.2019.8783178.
- [14] Seitaridis A., Rigas E.S., Bassiliades N., Ramchurn S.D. An agent-based negotiation scheme for the distribution of electric vehicles across a set of charging stations. Simulation Modelling Practice and Theory 2020, 100. https://doi.org/10.1016/j.simpat.2019.102040.
- [15] Gómez Vilchez J.J., Smyth A., Kelleher L., Lu H., Rohr C., Harrison G., Thiel C. Electric car purchase price as a factor determining consumers’ choice and their views on incentives in Europe. Sustainability 2019, 11(22), 6357. https://doi.org/10.3390/su11226357.
- [16] Ma S., Jiang M., Tao P., Song C., Wu J., Wang J., Deng T., Shang W. Temperature effect and thermal impact in lithium-ion batteries: A review. Progress in Natural Science: Materials International 2018, 28(6), 653–666. https://doi.org/10.1016/j.pnsc.2018.11.002.
- [17] Ruiz V. Standards for the performance and durability assessment of electric vehicle batteries. Publications Office of the European Union, Luxembourg, 2018. https://doi.org/10.2760/24743 JRC113420.
- [18] Haque N., Hughes A., Lim S., Vernon C. Rare earth elements: Overview of mining, mineralogy, uses, sustainability and environmental impact. Resources 2014, 3, 614–635. https://doi.org/0.3390/resources3040614.
- [19] Panagopoulos A.A., Christianos F., Katsigiannis M., Mykoniatis K., Chalkiadakis G., Pritoni M., Peffer T., Panagopoulos O.P., Rigas E.S., Culler D.E., Jennings N.R., Lipman T. iPlugie: Intelligent electric vehicle charging in buildings with gridconnected intermittent energy resources. Simulation Modelling Practice and Theory 2022, 115. https://doi.org/10.1016/j.simpat.2021.102439.
- [20] Wang Y., Haifeng S., Wenhao W., Yunjing Z. The impact of electric vehicle charging on grid reliability. IOP Conf. Ser.: Earth Environ. Sci. 2018, 199, 052033. https://doi.org/10.1088/1755-1315/199/5/052033.
- [21] Asif U., Schmidt K. Fuel cell electric vehicles (FCEV): Policy advances to enhance commercial success. Sustainability 2021, 13(9), 5149. https://doi.org/10.3390/su13095149.
- [22] Ju F., Murgovski N., Zhuang W., Hu X. Predictive energy management with engine switching control for hybrid electric vehicle via ADMM, Energy 2022, 263(1), 125971. https://doi.org/10.1016/j.energy.2022.125971.
- [23] Han L., Yang K., Ma T., Yang N., Liu H., Guo L. Battery life constrained real-time energy management strategy for hybrid electric vehicles based on reinforcement learning. Energy 2022, 259, 124986. https://doi.org/ 10.1016/j.energy.2022.124986.
- [24] Zhuang W., Li (Eben) S., Zhang X., Kum D., Song Z., Yin G., Ju F. A survey of powertrain configuration studies on hybrid electric vehicles. Applied Energy 2020, 262, 114553. https://doi.org/10.1016/j.apenergy.2020.114553.
- [25] Wei D., He H., Cao J. Hybrid electric vehicle electric motors for optimum energy efficiency: A computationally efficient design. Energy 2020, 203, 117779. https://doi.org/10.1016/j.energy.2020.117779.
- [26] Zhang F., Xiao L., Coskun S., Pang H., Xie S., Liu K., Cui Y. Comparative study of energy management in parallel hybrid electric vehicles considering battery ageing. Energy 2022, 264, 123219. https://doi.org/ 10.1016/j.energy.2022.123219.
- [27] Pielecha I., Cieślik W., Fluder K. Analysis of energy management strategies for hybrid electric vehicles in urban driving conditions. Combustion Engines 2018, 173(2), 14–18. https://doi.org/10.19206/CE-2018-203.
- [28] Wang H., Zhang X., Ouyang M. Energy consumption of electric vehicles based on real-world driving patterns: A case study of Beijing. Applied Energy 2015, 157, 710–719. https://doi.org/10.1016/j.apenergy.2015.05.057.
- [29] Singh A., Obaidat M. S., Singh S., Aggarwal A., Kaur K., Sadoun B., Kumar M., Hsiao K-F. A simulation model to reduce the fuel consumption through efficient road traffic modelling. Simulation Modelling Practice and Theory 2022, 121. https://doi.org/10.1016/j.simpat.2022.102658.
- [30] Kleiner J., Komsiyska L., Elger G., Endisch C. thermal modelling of a prismatic lithium-ion cell in a battery electric vehicle environment: influences of the experimental validation setup. Energies 2020, 13(1). https://doi.org/10.3390/en13010062.
- [31] Aris A.M., Shabani B. An experimental study of a lithium ion cell operation at low temperature conditions. Energy Procedia 2017, 110, 128–135. https://doi.org/10.1016/j.egypro.2017.03.117.
- [32] Mahmud A.H., Daud Z.H.C., Asus Z. The impact of battery operating temperature and state of charge on the lithium-ion battery internal resistance. Jurnal Mekanikal 2017, 40, 1–8.
- [33] Ehsani M., Gao Y., Longo S., Ebrahim K. Modern electric, hybrid electric, and fuel cell vehicles. CRC Press, Taylor&Francis Group, 2018.
- [34] Lechner G., Naunheimer H. Automotive transmissions: Fundamentals, selection, design and application, Springer-Verlag Berlin Heidelberger, Germany, 1999.
- [35] Siłka W., Teoria ruchu pojazdu (in Polish). WNT, Warszawa, 2002.
- [36] Bera P. A design method of selecting gear ratios in manual transmissions of modern passenger cars. Mechanism and Machine Theory 2019, 132. 133–153, https://doi.org/10.1016/j.mechmachtheory.2018.10.013.
- [37] Jaśkiewicz Z. Obliczanie układów napędowych (in Polish), WKiŁ 1972, Warszawa.
- [38] Sauleda F. Automotive clutch facings. Material G95. E-08396 Sant Cebrià de Vallalta, Barcelona, Spain, 2020.
- [39] Stopp R., Siefert C., 7th LuK Symposium, 11-12.04.2002, Germany, GMBH, LuK Symposium.
- [40] Husain I. Electric and hybrid vehicles, design fundamentals. CRC Press, Taylor&Francis Group.
- [41] Crolla D., Foster D., Kobayashi T., Vaughan N. Encyclopedia of automotive engineering. John Wiley & Sons 2015, 886–887.
- [42] Ju F., Zhuang W., Wang L., Zhang Z. Optimal sizing and adaptive energy management of a novel fur-wheel-drive hybrid powertrain. Energy 2019, 187, 116008, https://doi.org/10.1016/j.energy.2019.116008.
- [43] Wajand J.A., Wajand J.T. Tłokowe silniki spalinowe średnio- i szybkoobrotowe (in Polish). WNT 2005.
- [44] Bera P. Torque characteristic of SI engine in dynamic operating states. Combustion Engines 2017, 171(4), 175–180. https://doi.org/10.19206/CE-2017-429.
- [45] Bera P. Development of engine efficiency characteristic in dynamic working states. Energies 2019, 12, 2906. https://doi.org/10.3390/en12152906.
- [46] Shaolin Q., Lihong Q., Lijun Q. Hierarchical energy management control strategies for connected hybrid electric vehicles considering efficiencies feedback. Simulation Modelling Practice and Theory 2019, 90, 1–15. https://doi.org/10.1016/j.simpat.2018.10.008.
- [47] Liu Y., Wu Y., Wang X., Li L., Zhang Y., Chen Z. Energy management for hybrid electric vehicles based on imitation reinforcement learning. Energy 2023, 263(C), 125890. https://doi.org/10.1016/j.energy.2022.125890.
- [48] Heywood J.B. Internal Combustion Engine Fundamentals. McGaw-Hill, Inc., United States of America, 1988.
- [49] Razmara M., Bidarvatan M., Shahbakhti M., Robinett III R. D. Optimal exergy-based control of internal combustion engines. Applied Energy 2016, 183, 1389–1403. https://doi.org/10.1016/j.apenergy.2016.09.058.
- [50] Roberts A., Brooks R., Shipway P. Internal combustion engine cold-start efficiency: A review of the problem, causes and potential solutions. Energy Conversion and Management 2014, 82, 327–350. https://doi.org/10.1016/j.enconman.2014.03.002.
- [51] Cipollone R., Di Battista D., Mauriello M.M. Effects of oil warm up acceleration on the fuel consumption of reciprocating internal combustion engines. Energy Procedia 2015, 82, 1–8. https://doi.org/10.1016/j.egypro.2015.11.870.
- [52] Trapy J.D., Damiral P. An investigation of lubricating system warm-up for the improvement of cold start efficiency and emissions of S.I. automotive engines, SAE Transactions 1990, 99(6), Journal of passenger cars, 1635–1645.
- [53] Di Battista D., Cipollone R. Experimental and numerical assessment of methods to reduce warm up time of engine lubricant oil. Applied Energy 2016, 162, 570–580. https://doi.org/10.1016/j.apenergy.2015.10.127.
- [54] Derbiszewski B., Woźniak M., Grala Ł., Waleciak M., Hryshchuk M., Siczek K., Obraniak A., Kubiak P. A study on the flow resistance of fluids flowing in the engine oil-cooler chosen. Lubricants 2021, 9(8). https://doi.org/10.3390/lubricants9080075.
- [55] PáV K., Rychtář V., Vorel V. Heat balance in modern automotive engines. Škoda Auto a.s., Mladá Boleslav 293 60, Mecca 02 2012. https://doi.org/10.2478/v10138-012-0007-7.
- [56] Rundo M., Nervegna N. Lubrication pumps for internal combustion engines: a review. International Journal of Fluid Power 2015, 16(2), 59–74. https://doi.org/ 10.1080/14399776.2015.1050935.
- [57] Liu F. Analysis of BJ493 diesel engine lubrication system properties. IOP Conf. Series: Materials Science and Engineering 2017, 283. https://doi.org/10.1088/1757-899X/283/1/012005.
- [58] Oil pumps for internal combustion engines and transmissions. Conventional, Variable and Electrical. Pierburg pump technology GmbH 2012, Alfred Pierburg StraBe, 41460 Neuss, Germany.
- [59] Temperature-controlled lubricating oil pumps save fuel, 7th LuK Symposium, 11/12 April 2002, LuK GmbH & Co, Industriestrasse 3, D-77815 Buhl/Baden.
- [60] Rahmani R., Rahnejat H., Fitzsimons B., Dowson D. The effect of cylinder liner operating temperature on frictional loss and engine emissions in piston ring conjunction. Applied Energy 2017, 191, 568–581. https://doi.org/10.1016/j.apenergy.2017.01.098.
- [61] Shimada A., Harigaya Y., Suzuki M., Takiguchi M. An Analysis of Oil Film Temperature, Oil Film Thickness and Heat Transfer on a Piston Ring of Internal Combustion Engine: The Effect of Local Lubricant Viscosity. SAE 2004-32-0024, JSAE 20044311. https://doi.org/10.4271/2004-32-0024.
- [62] Nikolakopoulos P.G., Mavroudis S., Zavos A. Lubrication performance of engine commercial oils with different performance levels: The effect of engine synthetic oil aging on piston ring tribology under real engine conditions. Lubricants 2018, 6(4), 90. https://doi.org/10.3390/lubricants6040090.
- [63] Sun S., Sun N., Wang X. Study on mixed lubrication characteristics of piston/cylinder interface of variable length. AIP Advances 2019, 9, 075303. https://doi.org/10.1063/1.5093925.
- [64] Žák Z., Emrich M., Takáts M., Macek J. Incylinder heat transfer modelling. Mecca 2016, De Gruyter Open. https://doi.org/10.1515/mecdc-2016-0009.
- [65] Sandoval D., Heywood J. B. An improved friction model for spark-ignition engines. SAE International 2003. https://doi.org/10.4271/2003-01-0725.
- [66] Jeffrey R.S. Characterization and modelling of rubbing friction in a motored four-cylinder internal combustion engine. Master’s Thesis of Applied Science in the Department of Mechanical Engineering, McMaster University, Hamilton, Canada, 2011.
- [67] Mobil Super™ Synthetic, Mobil Passenger Vehicle Lube, Exxon Mobil Corporation, 22777 Springwoods Village Parkway, Spring TX 77389.
- [68] Dong P., Wu S., Guo W., Xu X. Coordinated clutch slip control for the engine start of vehicles with P2-hybrid automatic transmissions. Mechanism and Machine Theory 2020, 153, 103899. https://doi.org/10.1016/j.mechmachtheory.2020.103899.
- [69] Huang K.D., Tzeng S.C. A new parallel-type hybrid electric-vehicle. Applied Energy 2004, 79, 51–64. https://doi.org/10.1016/j.apenergy.2003.12.001.
- [70] Anselma P. G., Kollmeyer P., Lempert J., Zhao Z., Belingardi G., Emadi A. Battery state-of-health sensitive energy management of hybrid electric vehicles: Lifetime prediction and ageing experimental validation. Applied Energy 2021, 285, 116440. https://doi.org/10.1016/j.apenergy.2021.116440.
- [71] Emadi A., Advanced electric drive vehicles. CRC Press, Taylor&Francis, 2014.
- [72] Maleki H., Al Hallaj S., Selman J.R., Dinwiddie R.B., Wang H. Thermal properties of lithium-ion battery and components. Journal of The Electrochemical Society 1999, 146(3), 947–954. https://doi.org/10.1149/1.1391704.
- [73] Wang Z., Ma J., Zhang L. Finite element thermal model and simulation for a cylindrical li-ion battery. China National Engineering Laboratory fof Electric Vehicles, Beijing Institute of Technology, Beijing 2017, China. https://doi.org/10.1109/ACCESS.2017.2723436.
- [74] Drage P., Hinteregger M., Zotter G., Šimek M. Cabin conditioning for electric vehicles. ATZ worldwide, 02/2019.
- [75] Chen D., Jiang J., Kim G-H., Yang C., Pesaran A. Comparison of different cooling methods for lithium ion battery cells. Applied Thermal Engineering 2016, 94, 846–854. https://doi.org/10.1016/j.applthermaleng.2015.10.015
- [76] Groiß R. The influence of temperature on the operation of batteries and other electrochemical energy storage systems, BaSyTec GmbH, Öllinger Weg 17, 89176 Asselfingen, Germany, 2018.
- [77] Che Daud Z.H., Asus Z., Abu Bakar S.A., Abu Hasain N., Mazali I.I., Chrenko D. Thermal characteristics of a lithium-ion battery used in a hybrid electric vehicle under various driving cycles. IET Electrical Systems in Transportation 2020, 10(3), 243–248. https://doi.org/10.1049/iet-est.2019.0018.
- [78] Liu J., Peng H., Filipi Z. Modeling and analysis of the Toyota Hybrid System. Proceedings of the 2005 IEEE/ASME, International Conference on Advanced Intelligent Mechatronics, Monterey, California, USA, 24–28 July.
- [79] Cieślik W., Pielecha I., Szałek A. Assessment of parameters of the hybrid drive system in vehicles in urban traffic conditions. Combustion Engines 2015, 161(2), 14–17. https://doi.org/10.19206/CE-116887.
- [80] Cubito C., Millo F., Boccardo G., Di Pierro G., Ciuffo B., Fontaras G., Serra S., Garcia M.O., Trentadue G. Impact of different driving cycles and operating conditions on CO2 emissions and energy management strategies of a Euro-6 hybrid electric vehicle. Energies 2017, 10(10), 1590. https://doi.org/10.3390/en10101590.
- [81] Wang D., Song C., Shao Y., Song S., Peng S., Xiao F. Optimal control strategy for series hybrid electric vehicles in the warm-up process. Energies 2018, 11(5), 1091. https://doi.org/10.3390/en11051091.
- [82] Koksal H., Ceviz M.A., Yakut K., Kaltakkiran G., Özakin A.N. A novel ignition timing strategy to regulate the energy balance during the warm up phase of an SI engine. Case Studies in Thermal Engineering 2023, 41. https://doi.org/10.1016/j.csite.2022.102602.
- [83] Ibrahim T.M., Syahir A.Z., Zulkifli N.W.M., Masjuki H.H., Osaman A. Enhancing vehicle’s engine warm up using integrated mechanical approach. IOP Conference Series: Materials Science and Engineering 2017, 210, 012064. https://doi.org/10.1088/1757-899X/210/1/012064.
- [84] Kneba Z. Research on the phenomena of warming up and free cooling down the car engine. IOP Conference Series: Materials Science and Engineering 2018, 421, 042037. https://doi.org/10.1088/1757-899X/421/4/042037.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4e8bedc8-d8a0-4500-a493-20c9284052ce