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STRUCTURE

Abstract. The paper presents and demonstrates the theorem showing
the equivalence of the problem of the verifiability test of a logical expression
in the discrete model N of the logic with the search for the minimum value
of a continuous function generated by this expression in the structure M,
which is a simple extension of N. Theoretical considerations are illustrated
by the example of a certain semi-heuristic algorithm seeking the minimum
value of function ϕ with a short statistics of its.

1. Introduction

Many efficient algorithms have been developed for satisfiability testing. Many

of them are presented and classified by Jun Gu in [1]. One branch of this classifica-

tion includes algorithms namely continuous and constrained algorithms. Its’ idea

depends on creating multidimensional function which interpolates or approximates

some Boolean formulas or logic expressions. The satisfiability problem of these

formulas is changed to searching the minimum or the maximum of constructed

functions. For example, in 1998 Back et al. proposed to transform SAT into con-

tinuous optimisation [3]. Similarly, this method is also used for other satisfiability
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problems like Max-Sat, Uni-SAT etc. [2]. Replacing the problem of satisfiability

with the problem of finding the minimum value of the objective function allows us

to use many well-known standard or heuristic optimization algorithms. However,

in order to make the algorithms working more effectively it is necessary to make

some changes in their design.

In this article particle swarm approach is used to logic systems development,

where proposed application is used to model logic system with the search for the

minimum value of a continuous function generated for expressions formulated in

a predefined structure.

2.Mathematical Background

2.1. Language

Let L be the set of all logical expressions formed from the symbols of atomic

formulas (atoms) and the logical symbols ∼,∧,∨ defined as follows [4]:

If we take the non-empty finite set of At(L) = {p, q, r, . . .} as a set of atoms,

then:

L is the smallest set such that:

1. At(L) ⊂ L

2. For any A,B ∈ L

∼ A ∈ L

A ∧B ∈ L

A ∨B ∈ L

i.e. (p ∧ q) ∨ (∼ p ∨ q) ∈ L.

For constructing language we can also use the parenthesis free notation which

has better properties for decomposition of expressions [6].

2.2. Structure

A structure N is N = 〈X, f∼, f∧, f∨〉 where X is a non-empty set called a range

of assignment and

f∼ : X → X, f∧ : X ×X → X, f∨ : X ×X → X,

will be certain functions defined in the domain X and X ×X .
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2.3. Assignment

Let Z be a subset of the set of expressions L. Let us denote the set of all atoms

occurring in expressions from the set Z by At(Z).

Definition 1. The assignment in the set X of atomic sets of Z is every function

w, which assigns the atomic proposition of the set Z to the set of X.

Definition 2. The value of an expression A for assignment w is the element of the

set X, obtained by the function f∼, f∧, f∨ from the values assigned by the function

w for atomic proposition evaluated from the expression A.

To illustrate this definition, let’s take the following shortcut:

W (w, A) = expression value A for assignment w [5]

1. (I CONDITION). IF A is an atom, then

W (w, A) = w(A).

2. (INDUCTION CONDITIONS).

W (w,∼ A) = f∼(W (w, A)),

W (w, A ∧B) = f∧(W (w, A),W (w, B)),

W (w, A ∨B) = f∨(W (w, A,W (w, B))),

If the symbols of atoms are in order At(L) = {p1, p2, . . . , pm} then assignment

w can be a vector w = (w(p1),w(p2), . . . ,w(pm)).

2.4. Satisfiability

Let N = 〈X, f∼, f∧, f∨〉 be a structure. In a set X we can distinguish a non-

empty subset T .

Definition 3. (Generalized concept of truth in the structure). The expression A

is called T -expression in the structure N, if for any assignment in this structure

the value of the expression A belongs to the set T .
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2.5. Function generated by the expression

Definition 4. The function generated by the expression A in the N structure is

called the function

ϕA
N
: Xm → X

that, for any assignment w

ϕA
N(w(p1),w(p2), . . . ,w(pm)) = W (w, A),

where p1, p2, . . . , pm are all atoms in A.

Example 5. Let be given a non empty set of expressions Z ⊂ L comprised by the

use of operators ∼,∧,∨. Let N = 〈X, f∼, f∧, f∨〉 be a structure, where X = {0, 1}

and

f∼(x) = 1− x, f∧(x, y) = xy, f∨(x, y) = max(x, y),

N = 〈{0, 1}, 1− x, xy,max(x, y)〉.

Then, for A = p(p ∧ q) ∨ (∼ p ∧ q)q

ϕA
N(x, y) = max(xy, (1− x)y).

2.6. Normal form

Definition 6. The expression A is in a disjunctive normal form if and only if A

is an alternative of a finite number of conjunctions A1, A2, . . . , An, so as

A = A1 ∨ A2 ∨ . . . ∨ An.

Members of the conjunction Ai are atoms or negation of atoms, so as

Ai = B1
i ∧B2

i ∧ . . . ∧Bki

i ,

where B
j
i = ppq or p∼ pq, for p as an element from the set At(A).

If expression A is composed as presented above, then we say that it is of a class

[n, k], where

k = max
i=1...n

ki.

Example 7. Let A = p(p∧q∧r)∨(p∧(∼ q))∨((∼ p)∧q∧r)∨(r∧s)∨(p∧(∼ r)∧s)q.

Expression A is in the normal disjunctive form class [5, 3]. At(A) = {p, q, r, s}.



An example of the satisfiability problem in the continuous structure 125

Let N = 〈{0, 1}, 1− x, xy,max(x, y)〉. Having the following assignment w

w(p) = x1,w(q) = x2,w(r) = x3,w(s) = x4

and using assumption max(x,max(y, z)) = max(x, y, z) function ϕA
M

takes the

form

ϕA
N(x1, x2, x3, x4) = max

(

x1x2x3, x1(1− x2), (1− x1)x2x3, x3x4, x1(1− x3x4)
)

.

In classical logic it is true that for any expression A there exists an A′ expression

in the normal form such that

A ≡ A′.

Consequently, further consideration of this article will only be restricted to the

examination of expressions in the normal form.

3. From discrete to continuous universe

Let the structure be given

N = 〈{0, 1}, 1− x, xy,max(x, y)〉.

Let us create a new structure by changing only the set X from {0, 1} to <

0, 1 >⊂ R

M = 〈〈0, 1〉, 1− x, xy,max(x, y)〉.

Let A be an expression in the normal form of class [n, k] and |At(A)| = m.

Theorem 8. The expression A is a tautology if and only if

ϕA
M
(x) >

1

2k

for all x ∈ 〈0, 1〉m.

This means that in the continuous structure M T -expressions are the < 1
2k , 1 >

expressions or R+ expressions.

In order to prove the above theorem, we first show the truth of several prop-

erties of the function ϕA
M
.

Let’s presume the following assumptions.
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Let A be an expression from language L in the normal form class [n, k], where

At(A) = {p1, p2, . . . , pm}, so that

A = A1 ∨ A2 ∨ . . . ∨ An, (1)

where

Ai = B1
i ∧B1

i ∧ . . . ∧Bki

i (2)

and for 1 6 i 6 n, 1 6 j 6 ki B
j
i = ppq or p∼ pq, p ∈ {p1, p2, . . . , pm}

k = max
i=1...n

ki.

Let us accept at the same time for any i(1 6 i 6 m), xi = w(pi).

Corollary 9. For any (x1, x2, . . . , xm) ∈ {0, 1}m

ϕA
M
(x1, x2, . . . , xm) ∈ {0, 1}.

Corollary 10. If for any (x1, x2, . . . , xm) ∈ {0, 1}m

ϕA
M
(x1, x2, . . . , xm) = 1

and only if A is a tautology.

The above properties result directly from the structure extension from N to M.

Corollary 11.

ϕA
M

(1

2
,
1

2
, . . . ,

1

2

)

=
1

2l
,

where l = mini=1...n ki.

Lemma 12. If for any (x1, x2, . . . , xm) ∈ 〈0, 1〉m

ϕA
M
(x1, x2, . . . , xm) > 0

then A is a tautology.
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Proof. Let x = (x1, x2, . . . , xm) ∈ {0, 1}m. From the assumption results

ϕA
M
(x1, x2, . . . , xm) > 0. Then from Corollary 9 ϕA

M
(x1, x2, . . . , xm) = 1, so using

Corollary 10 A is a tautology. �

Let us proof Theorem 8.

Proof. (⇐) If for any x = (x1, x2, . . . , xm) ∈ 〈0, 1〉m ϕA
M
(x) > 1

2k
, that ϕA

M
(x) > 0.

Using Lemma 12, A is a tautology.

(⇒) Let A be a tautology and let x = (x1, x2, . . . , xm) ∈ 〈0, 1〉m. Let us create

a new vector of assignment ǫ = (ǫ1, ǫ2, . . . , ǫm) ∈ 〈0, 1〉m that

ǫi =











0 if xi 6
1

2
for i = 1 . . .m,

1 if xi >
1

2
.

(3)

Because ǫ = (ǫ1, ǫ2, . . . , ǫm) ∈ {0, 1}m therefore using Corollary 10:

ϕA
M

(

ǫ1, ǫ2, . . . , ǫm
)

= 1.

Using (1) A is in a form

A = A1 ∨ A2 ∨ . . . ∨ An.

Therefore

ϕA
M = max(ϕA1

M
, ϕA2

M
, . . . , ϕAn

M
).

Because ϕA
M
(ǫ) = 1, then must exist i(1 6 i 6 n) that ϕAi

M
(ǫ) = 1. Using (2),

Ai = B1
i ∧B2

i ∧ . . . ∧Bki

i ,

and therefore

ϕAi

M
= ϕ

B1

i

M
ϕ
B2

i

M
. . . ϕ

B
ki
i

M
.

Because ǫ = (ǫ1, ǫ2, . . . , ǫm) ∈ {0, 1}m for any j(1 6 j 6 ki)ϕ
B

j

i

M
(ǫ) = 1 using

corollary 1 and assumption ϕAi

M
(ǫ) = 1. Because B

j
i = ppq or p∼ pq, where

p ∈ {p1, p2, . . . , pm} for 1 6 i 6 n, 1 6 j 6 ki, therefore exist t(1 6 t 6 m) that

ϕ
B

j

i

M
=







w(pt) if Bj
i = pptq,

1− w(pt) if Bj
i = p∼ ptq.
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Because ϕ
B

j

i

M
(ǫ) = 1, therefore ϕ

B
j

i

M
(ǫt) = 1

ϕ
B

j

i

M
(ǫt) =







ǫt if Bj
i = pptq or when ǫt = 1,

1− ǫt if Bj
i = p∼ ptq or when ǫt = 0.

Therefore

ϕ
B

j

i

M
(xt) =







xt if ǫt = 1,

1− xt if ǫt = 0.

Because xt >
1
2 when ǫt = 1 and xt 6

1
2 when ǫt = 0 using construction (3) so

ϕ
B

j

i

M
(xt) >

1

2

and further for any i (1 6 i 6 n):

ϕAi

M
(x) = ϕ

B1

i

M
ϕ
B2

i

M
. . . ϕ

B
k1
i

M
>

1

2ki
.

Because

ϕA
M

= max(ϕA1

M
ϕA2

M
. . . ϕAn

M
),

that

ϕA
M(x) > ϕAi

M
(x) >

1

2ki
>

1

2k
,

wherek = maxi=1...n ki. What ends the proof of the theorem. �

This theorem demonstrates that the satisfiability test of a logical expression in

the discrete model of logic N is equivalent to finding extremum of the continuous

function ϕ in the area 〈0, 1〉m generated by that expression in the structure M.

Summing up, we are looking for the smallest value of a function knowing that it

is 0 in the case that its generating statement is false or greater than 0 when the

expression is true, with additional information about its lower limit resulting from

the above statement.

Using the mathematical analysis of continuous property we know that the

smallest value of a function can be realized at the points of its extremes inside the

examined area or on its border.

Since every expression in the normal class [n, k] (k > 3) can be reduced to

a task in the form of a normal class [n1, 3] for n1 > n, where numerical tests are

reduced to testing only this class.
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4. Some numerical experiments

In order to test the effectiveness of the developed method of investigating the

fulfillment of logical expressions with the function generated by the expression,

the following algorithm was used. Algorithm in pseudo-code

data:

m – the number of atomic formulas which can built A,

n – the number of conjunctives in A,

k – the number of atomic formulas in each conjunctive,

s – the number of particles,

Tmax – maximal number of iterations.

Generate random (testing) formula A in a normal form of the class [n, k].

Generate random particles x1, x2, . . . , xs:

while t < Tmax do

2: Evaluate ϕA(x1), ϕ
A(x2), . . . , ϕ

A(xs)
Find minimum of {ϕA(x1), ϕ

A(x2), . . . , ϕ
A(xs)}

4: if minimum < 1
2k then

A is ”false”; stop
6: end if

Create new particles x1, x2, . . . , xs by PSO method
8: end while

Classic PSO method [7] build new particles (for i = 1 . . . s):

xnew
i = xold

i + α(xold
max − xold

i ) + β(t)random([0, 1]m),

where α and β(t) are moderating coefficients.

Results of testing this algorithm in original classic version of PSO were unsat-

isfied. Only some random cases were positive. More of tests were divergent.

After many experiments one of the best has the following form.

If xt
i = (xt

i,1, x
t
i,2, . . . , x

t
i,m) is an old position of particle that construction of

new particle is (for l = 1 . . .m):

xnew
i,l =







1− β(t)rnd[0, 1] if xold
i,l < 1

2 ,

0 + β(t)rnd[0, 1] if xold
i,l > 1

2 ,
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when ϕ(xold
i ) > ϕ(xold

best).

We can also accelerate the process if one or more of the started particles are

(12 ,
1
2 , . . . ,

1
2 ).

Since each expression in the normal form [n, k] (k > 3) can be reduced to an

expression in the form of a normal class [n1, 3], where n1 > n numerical tests are

reduced to testing only class (k = 3).

Hint: It is also good if the number of particles is equal of the number of

atomic formulas (m = s) After these changes we have the next statistic results of

constructed algorithm.

Table 1
Benchmark testing – number of iterations

depending M and N

M \ N 30 35 40 45
8 10.66 16.35 20.15 25.35
10 10.13 18.46 34.02 46.79
12 6.52 15.52 32.58 59.21
14 5.19 12.05 25.00 47.67

The array represents the average amount of iterations after which the algo-

rithm identifies the expression as non-satisfiability. Parameters of this statistics

are: M – the number of atoms in the tested expression, N – the number of al-

ternative members i.e. the number of different triple conjunctions (clouses) in the

expression. Tests were performed for randomly generated 1000 false statements

for each pair of parameters.

5. Conclusion

Equivalence of SAT examinations – a discrete problem in the N model with

the search for the minimum value of the continuous function ϕ in the M structure

opens the way to using heuristic algorithms to solve both problems. The prob-

lem, however, is to find an effective algorithm, which briefly signals the example

discussed above. This, however, opens up a wide field for further research both

in constructing new algorithms and for finding other discrete structures and their

continuous extensions similar to those presented in the article.
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Looking from another perspective, the functions generated by logical state-

ments can become very demanding test functions for evaluating heuristic algo-

rithms.

We can also risk the assertion that, similarly to the discrete-matter classifi-

cation, it is also possible to classify the functions of the NP class as exemplified

by the functions of the class NP, which are examples of functions generated by

expressions and others that are difficult to judge at the current level of research.
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