Warianty tytułu
Języki publikacji
Abstrakty
The paper describes the hydrodynamic part of the coupled ice-ocean model that also includes the ecosystem predictive model. The Baltic Sea model is based on the Community Earth System Model (CESM from NCAR – National Centre for Atmospheric Research). CESM was adopted for the Baltic Sea as a coupled sea-ice model. It consists of the Community Ice CodE (CICE, model version 4.0) and the Parallel Ocean Program (POP, version 2.1). The models are linked through a coupler (CPL7), which is based on the Model Coupling Toolkit (MCT) library. The current horizontal resolution is about 2 km (1/48 degrees). The ocean model has 21 vertical levels and is forced by atmospheric fields from the European Centre for Medium Weather Forecast (ECMWF). A preliminary validation of the hydrodynamic module with in situ measurements and reanalysis from My Ocean (http://www.myocean.eu) has also been done. In the operational mode, 48-hour atmospheric forecasts provided by the UM model from the Interdisciplinary Centre for Mathematical and Computational Modelling of Warsaw University (ICM) are used. The variables presented on the website in real time for a 48-hour forecast are temperature, salinity, currents, sea surface height, ice thickness and ice coverage (http://deep.iopan.gda.pl/CEMBaltic/new_lay/index.php). The embedded model of the marine ecosystem, like ice, is not taken into account in this paper.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
519--541
Opis fizyczny
Bibliogr. 43 poz., wykr.
Twórcy
autor
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland, dzierzb@iopan.gda.pl
autor
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
autor
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
autor
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
Bibliografia
- 1. Arakawa A., Lamb V.R., 1977, Computational design of the basic dynamic processes of the UCLA general circulation model, Methods Comput. Phys., 17, 173-265, http://dx.doi.org/10.1016/B978-0-12-460817-7.50009-4.
- 2. BALTEX, 1977, BALTEX Phase I 1993-2002. State of the art report. BALTEX Secr. Publ., 31, 181 pp.
- 3. BALTEX, 2006a, BALTEX Phase II 2003-2012. Science framework and implementation strategy, BALTEX Secr. Publ., 34, 90 pp.
- 4. BALTEX, 2006b, Assessment of climate change for the Baltic Sea basin - the BACC project, BALTEX Secr. Publ., 35, 26 pp.
- 5. Brachet S., Le Traon P.Y., Le Provost C., 2004, Mesoscale variability from a high-resolution model and from altimeter data in the North Atlantic Ocean, J. Geophys. Res., 109, C12025, http://dx.doi.org/10.1029/2004JC002360.
- 6. Bryan K.A., 1969, Numerical method for the study of the circulation of the world ocean, J. Comput. Phys., 4 (3), 347-376, http://dx.doi.org/10.1016/0021-9991(69)90004-7.
- 7. Bryan F.O., Danabasoglu G., Gent P.R., Lindsay K., 2006, Changes in ocean ventilation during the 21st Century in the CCSM3, Ocean Model., 15 (3-4), 141-156, http://dx.doi.org/10.1016/j.ocemod.2006.01.002.
- 8. Dzierzbicka-Głowacka L., 2000, Mathematical modelling of the biological processes in the upper layer of the sea, Diss. and Monogr., 13, Inst. Oceanol. PAS, Sopot, 124 pp.
- 9. Dzierzbicka-Głowacka L., 2005, Modelling the seasonal dynamics of marine plankton in the southern Baltic Sea. Part 1. A Coupled Ecosystem Model, Oceanologia, 47 (4), 591-619.
- 10. Dzierzbicka-Głowacka L., 2006, Modelling the seasonal dynamics of marine plankotn in the southern Baltic Sea. Part 2. Numerical simulations, Oceanologia, 48 (1), 41-71.
- 11. Dzierzbicka-Głowacka L., Bielecka L., Mudrak S., 2006, Seasonal dynamics of Pseudocalanus minutus elongatus and Acartia spp. in the southern Baltic Sea (Gdańsk Deep) - numerical simulations, Biogeosciences, 3 (4), 635-650, http://dx.doi.org/10.5194/bg-3-635-2006.
- 12. Dzierzbicka-Głowacka L., Jakacki J., Janecki M., Nowicki A., 2011b, Variability in the distribution of phytoplankton as affected by changes to the main physical parameters in the Baltic Sea, Oceanologia, 53 (1-TI), 449-470, http://dx.doi.org/10.5697/oc.53-1-TI.449.
- 13. Dzierzbicka-Głowacka L., Kulinski K., Maciejewska A., Jakacki J., Pempkowiak J., 2011a, Numerical modelling of POC dynamics in the southern Baltic under possible future conditions determined by nutrients, light and temperature, Oceanologia, 53 (4), 971-992, http://dx.doi.org/10.5697/oc.53-4.971.
- 14. Dzierzbicka-Głowacka, L., Żmijewska I.M., Mudrak S., Jakacki J., Lemieszek A., 2010, Population modelling of Acartia spp. in a water column ecosystem model for the South-Eastern Baltic Sea, Biogeosciences, 7 (6), 2247.2259, http://dx.doi.org/10.5194/bg-7-2247-2010.
- 15. Hunke E.C., Dukowicz J. K., 1997, An elastic-viscous-plastic model for sea ice dynamics, J. Phys. Oceanogr., 27 (9), 1849.1867, http://dx.doi.org/10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2.
- 16. Janecki M., Jakacki J., Nowicki A., Dzierzbicka-G.owacka L., 2011, Marine ecosysten model for the Baltic Sea, 8th Baltic Sea Science Congress, St. Petersburg, Russia, 22.26.08.2011, Book of Abstracts, 293 pp.
- 17. Jansen F., Schrum C., Backhaus J. O., 1999, A climatological data set of temperature and salinity for the Baltic Sea and the North Sea, Dt. Hydrogr. Z., 9 (Suppl.), 245 pp.
- 18. Jones P.W., Worley P.H., Yoshida Y., White J. B., Levesque J., 2003, Practical performance portability in the Parallel Ocean Program (POP), Concurr. Comp. Pract. E., 1, 1-15.
- 19. Killworth P.D., Stainforth D., Webb D. J., Paterson S.M., 1991, The development of a free-surface Bryan-Cox-Semtner ocean model, J. Phys. Oceanogr., 21 (9), 1333.1348, http://dx.doi.org/10.1175/1520-0485(1991)021<1333:TDOAFS>2.0.CO;2.
- 20. Large W.G., McWilliams J. C., Doney S. C., Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization, Rev. Geophys., 32 (4), 363-403, http://dx.doi.org/10.1029/94RG01872.
- 21. Lass H. U., Mohrholz V., On dynamics and mixing of inflowing saltwater in the Arkona Sea, J. Geophys. Res., 108 (C2), 3042, http://dx.doi.org/10.1029/2002JC001465.
- 22. Lass H.U., Mohrholz V., Seifert T., 2001, On the dynamics of the Pomeranian Bight, Cont. Shelf Res., 21 (11-12), 1237-1261, http://dx.doi.org/10.1016/S0278-4343(01)00003-6.
- 23. Lee M.M., Coward A., 2003, Eddy mass transport for the Southern Ocean in an eddy-permitting global ocean model, Ocean Model., 5 (3), 249-266, http://dx.doi.org/10.1016/S1463-5003(02)00044-6.
- 24. Lehmann A., Lorenz P., Jacob D., 2004, Modelling the exceptional Baltic Sea inflow events in 2002.2003, Geophys. Res. Lett., 31, L21308, http://dx.doi.org/10.1029/2004GL020830.
- 25. Li X., Yi C., McWilliams J. C., Fu L.-L., 2001, A comparison of two vertical-mixing schemes in a Pacific Ocean general circulation model, J. Climate, 14 (7), 1377-1398, http://dx.doi.org/10.1175/1520-0442(2001)014<1377:ACOTVM>2.0.CO;2.
- 26. Lipscomb W.H., Hunke E.C., 2004, Modeling sea ice transport using incremental remapping, Mon. Wea. Rev., 132 (6), 1341-1354, http://dx.doi.org/10.1175/1520-0493(2004)132<1341:MSITUI>2.0.CO;2.
- 27. Maltrud M.E., McClean J. L., 2005, An eddy resolving global 1/10. ocean simulation, Ocean Model., 8 (1.2), 31-54, http://dx.doi.org/10.1016/j.ocemod.2003.12.001.
- 28. Masłowski W., Marble D., Walczowski W., Schauer U., Clement J. L., Semtner A. J., 2004, On climatological mass, heat, and salt transports through the Barents Sea and Fram Strait from a pan-Arctic coupled ice-ocean model simulation, J. Geophys. Res., 109, C03032, http://dx.doi.org/10.1029/2001JC001039.
- 29. McDougall T. J., Jackett D.R., Wright D. G., Feistel R., 2003, Accurate and computationally efficient algorithms for potential temperature and density of seawater, J. Atmos. Ocean. Tech., 20 (5), 730-741, http://dx.doi.org/10.1175/1520-0426(2003)20<730:AACEAF>2.0.CO;2.
- 30. Meier H.E.M., 2002, Regional ocean climate simulations with a 3D ice-ocean model for Baltic Sea. Part 1: model experiments and results for temperature and salinity, Clim. Dynam., 19 (3-4), 237-253, http://dx.doi.org/10.1007/s00382-001-0224-6.
- 31. Meier H.E.M., 2005, Modeling the age of Baltic Seawater masses: quantification and steady state sensitivity experiments, J. Geophys. Res., 110, C02006, http://dx.doi.org/10.1029/2004JC002607.
- 32. Nadiga B.T., Taylor M., Lorenzc J., 2006, Ocean modelling for climate studies: eliminating short time scales in long-term, high-resolution studies of ocean circulation, Math. Comput. Model., 44 (9-10), 870-886, http://dx.doi.org/10.1016/j.mcm.2006.02.021.
- 33. Omstedt A., Chen Y., Wesslander K., 2005, A comparison between the ERA40 and the SMHI gridded meteorological databases as applied to Baltic Sea modeling, Nord. Hydrol., 36 (4), 369-380.
- 34. Osiński R., 2007, Symulacja procesów dynamicznych w Morzu Bałtyckim zintegrowanym modelem ocean-lód, Ph. D. thesis, Inst. Oceanol. PAS, Sopot, 112 pp.
- 35. Peters H., Gregg M.C., Toole J.M., 1988, On the paramterization of equatorial turbulence, J. Geophys. Res., 93, 1199-1211, http://dx.doi.org/10.1029/JC093iC02p01199.
- 36. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P., 2001, Numerical recipes in Fortran 77: The art of scientific computing, Cambrige Univ. Press, 921 pp.
- 37. Rudolph C., Lehmann A., 2006, A model-measurements comparison of atmospheric forcing and surface fluxes of the Baltic Sea, Oceanologia, 48 (3), 333-360.
- 38. Semtner A. J., 1974, A general circulation model for the World Ocean, UCLADept. Meteor. Tech. Rep., 8, 99 pp.
- 39. SMHI & FIMR, 1982, Climatological Ice Atlas for the Baltic Sea, Kattegat, Skagerrak and Lake Vjänern (1963-1979), Sjöfartsverket, Njörrkoping, 220 pp.
- 40. Smith R., Gent P., 2004, Reference manual for the Parallel Ocean Program (POP), Los Alamos Nat. Lab., New Mexico, 75 pp.
- 41. Uppala S. M., Kållberg P.W., Simmons A. J., Andrae U., da Costa Bechtold V., Fiorino M., Gibson J.K., Haseler J., Hernandez A., Kelly G. A., Li X., Onogi K., Saarinen S., Sokka N., Allan R.P., Andersson E., Arpe K., Balmaseda M. A., Beljaars A. C. M., van de Berg L., Bidlot J., Bormann N., Caires S., Chevallier F., Dethof A., Dragosavac M., Fisher M., Fuentes M., Hagemann S., Hólm E., Hoskins B. J., Isaksen L., Janssen P. A. E. M., Jenne R., McNally A. P., Mahfouf J.-F., Morcrette J.-J., Rayner N. A., Saunders R. W., Simon P., Sterl A., Trenberth K. E., Untch A., Vasiljevic D., Viterbo P., Woollen J., 2006, The ERA-40 re-analysis, Quart. J. Roy. Meteor. Soc., 131 (612), 2961-3012, http://dx.doi.org/10.1256/qj.04.176.
- 42. Woźniak B., Bradtke K., Darecki M., Dera J., Dudzińska-Nowak J., Dzierzbicka- Głowacka L., 2011a, SatBałtyk - A Baltic environmental satellite remote sensing system - an ongoing project in Poland. Part 1: Assumptions, scope and operating range, Oceanologia, 53 (4), 897-924, http://dx.doi.org/10.5697/oc.53-4.897.
- 43. Woźniak B., Bradtke K., Darecki M., Dera J., Dudzińska-Nowak J., Dzierzbicka- Głowacka L., 2011b, SatBałtyk - A Baltic environmental satellite remote sensing system - an ongoing project in Poland. Part 2: Practical applicability and preliminary results, Oceanologia, 53 (4), 925-958, http://dx.doi.org/10.5697/oc.53-4.925.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4e35a0f4-dc20-45e1-a4ac-c0b033d7b432