Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | Vol. 40, no. 1 | 388--403
Tytuł artykułu

Coping with limitations of fetal monitoring instrumentation to improve heart rhythm variability assessment

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The most commonly used method of fetal monitoring is based on analysis of the fetal heart activity. Computer-aided fetal monitoring enables extraction of information hidden for visual interpretation – the instantaneous fetal heart rate (FHR) variability. The most natural method of obtaining FHR signal is fetal electrocardiography (FECG), where the FHR has a natural form of unevenly spaced time series of events – heart beats detected in FECG. However, because of problems with FECG recording, the today's instrumentation is based on monitoring of mechanical activity of the fetal heart by means of Doppler ultrasound technique. The ultrasound signal periodicity is determined with autocorrelation methods, so the FHR output signal has a form of evenly spaced instantaneous measurements, some of which are incorrect or duplicate. The aim of the work was to develop a correction algorithm for recognition and removal of these invalid values, to reproduce the FHR signal as time series of events. The new algorithm was compared to other known methods basing on the collected research material and defined performance measures. Thanks to the reference FECG signal registered simultaneously, a detailed analysis of algorithms performance at the level of true heart cycles was possible. Additionally, the influence of signal correction on indices describing the instantaneous FHR variability was evaluated. The obtained results showed that although changing the FHR signal form into time series of events improved the accuracy of indices, but in relation to beat-to-beat variability, that accuracy still does not ensure reliable analysis of instantaneous FHR variability.
Wydawca

Rocznik
Strony
388--403
Opis fizyczny
Bibliogr. 58 poz., rys., tab., wykr.
Twórcy
  • Lukasiewicz Research Network – Institute of Medical Technology and Equipment, Zabrze, Poland
  • Lukasiewicz Research Network – Institute of Medical Technology and Equipment, Zabrze, Poland
  • Silesian University of Technology, Institute of Electronics, Gliwice, Poland
  • Lukasiewicz Research Network – Institute of Medical Technology and Equipment, Zabrze, Poland
  • Lukasiewicz Research Network – Institute of Medical Technology and Equipment, Zabrze, Poland
Bibliografia
  • [1] Abdulhay EW, Oweis RJ, Alhaddad AM, Sublaban FN, Radwan MA, Almasaeed HM. Non-invasive fetal heart rate monitoring techniques: review article. Annu ORNL Biomed Sci Eng Cent Conf 2014;2(3):53–67.
  • [2] Goncalves H, Rocha AP, Ayres-de-Campos D, Bernardes J. Internal versus external intrapartum foetal heart rate monitoring: the effect on linear and nonlinear parameters. Physiol Meas 2006;27:307–19. http://dx.doi.org/10.1088/0967-3334/27/3/008.
  • [3] Hon EH. Instrumentation of fetal heart rate and fetal electrocardiography. II. A vaginal electrode. Am J Obstet Gynecol 1963;86:772–8.
  • [4] Kahankova R, Jaros R, Martinek R, Jezewski J, Wen H, Jezewski M, et al. Non-adaptive methods of fetal ECG signal processing. Recent Adv Electr Electron Eng 2017;15 (3):476–90.
  • [5] Wrobel J, Horoba K, Pander T, Jezewski J, Czabanski R. Improving the fetal heart rate signal interpretation by application of myriad filtering. Biocybern Biomed Eng 2013;33(4):211–21. http://dx.doi.org/10.1016/j.bbe.2013.09.004. 14c,poz.17 CTG.
  • [6] Jezewski J, Horoba K, Roj D, Wrobel J, Kupka T, Matonia A. Evaluating the fetal heart rate baseline estimation algorithms by their influence on detection of clinically important patterns. Biocybern Biomed Eng 2016;36(4):562–73. http://dx.doi.org/10.1016/j.bbe.2016.06.003.
  • [7] Moslem B, Mohydeen A, Bazzi O. Monitoring the fetal heart rate variability during labor. 2015 37th Ann. Int. IEEE EMBS Conference. 2015. pp. 5846–50.
  • [8] Voicu I, Girault JM, Roussel C, Decock A, Kouame D. Robust estimation of fetal heart rate from US Doppler signals. Phys Procedia 2010;3:691–9.
  • [9] Hruban L, Spilka J, Chudacek V, Janku P, et al. Agreement on CTG intrapartum recordings between expert-obstetricians. J Eval Clin Pract 2015. http://dx.doi.org/10.1111/jep.12368.
  • [10] Romano M, Bifulco P, Ruffob M, Improtab G, Clementec F, Cesarelli M. Software for computerised analysis ofcardiotocographic traces. Comput Methods Programs Biomed 2016;124:121–37.
  • [11] Romano M, Bracale M, Cesarelli M, Campanile M, Bifulco P, De Falco M, et al. Antepartum cardiotocography: a study of fetal reactivity in frequency domain. Comput Biol Med 2006;36:619–33.
  • [12] Dawes GS, Meir YJ, Mandruzzato GP. Computerized evaluation of fetal heart rate patterns. J Perinat Med 1994;22(6):491–9.
  • [13] Bozoki Z. Chaos theory and power spectrum analysis in computerized cardiotocography. Eur J Obstet Gynecol Reprod Biol 1997;71:163–8.
  • [14] Czabanski R, Wrobel J, Jezewski J, Leski JM, Jezewski M. Efficient evaluation of fetal wellbeing during pregnancy using methods based on statistical learning principles. J Med Imag Health In 2015;5(6):1327–36. http://dx.doi.org/10.1166/jmihi.2015.1536.
  • [15] Czabanski R, Jezewski J, Wrobel J, Sikora J, Jezewski M. Application of fuzzy inference system for classification of fetal heart rate tracings in relation to neonatal outcome. Gin Pol 2013;84(1):38–43.
  • [16] Nunes I, Ayres de Campos D, Figueredo C, Bernardes J. An overview of central fetal monitoring systems in labour. J Perinat Med 2013;41:93–9.
  • [17] Romano M, Iuppariello L, D'Addio G, Clemente F, Amato F, Cesarelli M. Computerised simulation of fetal heart rate signals. 2017 6th IEEE Int. Conference on E-Health and Bioengineering (EHB). 2017. pp. 185–8.
  • [18] Costa-Santos C, Antunes L, Souto A, Bernardes J. Assessment of disagreement: a new information-based approach. Ann Epidemiol 2010;20:555–61.
  • [19] Wrobel J, Jezewski J, Horoba K, Pawlak A, Czabanski R, Jezewski M, et al. Medical cyber-physical system for home telecare of high-risk pregnancy – design challenges and requirements. J Med Imag Health In 2015;5(6):1295–301. http://dx.doi.org/10.1166/jmihi.2015.1532.
  • [20] Georgoulas G, Karvelis P, Spilka J, Chudacek V, Stylios CD, Lhotska L. Investigating pH based evaluation of fetal heart rate (FHR) recordings. Health Technol (Berl) 2017. http://dx.doi.org/10.1007/s12553-017-0201-7.
  • [21] Knopf K, Parer JT, Espinoza MI, Horton JIA, Gunn AJ, Williams CE, et al. Comparison of mathematical indices of fetal heart rate variability with visual assessment in the human and sheep. J Dev Physiol 1991;16(6):367–72.
  • [22] Jezewski J, Pawlak A, Horoba K, Wrobel J, Czabanski R, Jezewski M. Selected design issues of the medical cyber-physical system for telemonitoring pregnancy at home. Microprocess Microsyst 2016;46:35–43.
  • [23] Jezewski J, Wrobel J, Matonia A, Horoba K, Martinek R, Kupka T, et al. Is abdominal fetal electrocardiography an alternative to Doppler ultrasound for FHR variability evaluation? Front Physiol 2017;8. Article 305.
  • [24] Jaros R, Martinek R, Kahankova R. Non-adaptive methods for fetal ECG signal processing: a review and appraisal. Sensors 2018;18:3648. http://dx.doi.org/10.3390/s18113648.
  • [25] Peters MJ, Crowe JA, Pieri JF, Quartero H, Hayes Gill BR, James D, et al. Monitoring the fetal heart non-invasively: a review of methods. J Perinat Med 2001;29:408–16.
  • [26] Spencer JAD, Belcher RD, Dawes RD. The influence of signal loss on the comparison between computer analysis of the fetal heart rate in labor using pulsed Doppler ultrasound (with autocorrelation) and simultaneous scalp electrocardiogram. Eur J Obstet Gynecol Reprod Biol 1987;25:29–34.
  • [27] Docker MF. Doppler ultrasound monitoring technology. Br J Obstet Gynaecol Suppl 1993;100(9):18–20.
  • [28] Marzbanrad F, Kimura Y, Funamoto K, Sugibayashi R, Endo M, Ito T, et al. Automated estimation of fetal cardiac timing events from doppler ultrasound signal using hybrid models. IEEE J Biomed Health Inform 2014;18(4):1169–77.
  • [29] Marzbanrad F, Kimura Y, Funamoto K, Oshio S, Endo M, Sato N, et al. Model-based estimation of aortic and mitral valves opening and closing timings in developing human fetuses. IEEE J Biomed Health Inform 2016;20(1):240–8.
  • [30] Marzbanrad F, Stroux L, Clifford GD. Cardiotocography and beyond: a review of one-dimensional Doppler ultrasound application in fetal monitoring. Physiol Meas 2018;39(8). http://dx.doi.org/10.1088/1361-6579/aad4d1. 08TR01.
  • [31] Lee CS, Masek M, Lam CP, Tan KT. Towards Higher accuracy and better noise-tolerance for fetal heart rate monitoring using doppler ultrasound. 2009 IEEE Region 10 Conference (TENCON). 2009. pp. 1–6.
  • [32] Spilka J, Chudacek V, Bursa M, Zach L, Huptych M, Lhotska L, et al. Stability of variability features computed from fetal heart rate with artificially infused missing data. Comput Cardiol 2012;39:917–20.
  • [33] Wrobel J, Roj D, Jezewski J, Horoba K, Kupka T, Jezewski M. Evaluation of the robustness of fetal heart rate variability measures to low signal quality. J Med Imag Health In 2015;5 (6):1311–8. http://dx.doi.org/10.1166/jmihi.2015.1534.
  • 34] Divon MY. Autocorrelation techniques in fetal monitoring. Am J Obstet Gynecol 1985;151:2–6.
  • [35] Fukushima T, Davidson EC, Hon EH. Limitations of fetal heart rate monitoring (+Reply). Am J Obstet Gynecol 1987;156(4):1038–40.
  • [36] Fukushima T, Flores CA. Limitations of autocorrelation in fetal heart rate monitoring. Am J Obstet Gynecol 1985;153 (6):685–92.
  • [37] Chang A, Sahota DS, Reed NN, James DK, Mohajer MP. Computerised fetal heart rate analysis in labour - effect of sampling rate. Eur J Obstet Gynecol Reprod Biol 1995;59:125–9.
  • [38] Bozoki Z. Digital communication with fetal monitors. Obstet Gynecol 1997;90:837–9.
  • [39] Frigo G, Giorgi G. Comparative evaluation of on-line missing data regression techniques in intrapartum FHR measurements. 2017 IEEE Int. Instrumentation and Measurement Technology Conference (I2MTC); 2017. http://dx.doi.org/10.1109/I2MTC.2017.7969772.
  • [40] Cesarelli M, Romano M, Bifulco P. Technical problems in STV indexes application, T. Jarm, P. Kramar, A. Zupanic (Eds.): IFMBE Proc. 2007 11th Mediterranean Conference on Medical and Biological Engineering and Computing (MEDICON); 2007. Pp. 777-780.
  • [41] Romano M, Iuppariello L, Ponsiglione AM, Improta G, Bifulco P, Cesarelli M. Frequency and time domain analysis of foetal heart rate variability with traditional indexes: a critical survey. Comput Math Methods Med 2016. http://dx.doi.org/10.1155/2016/9585431. Article ID 9585431.
  • [42] Kubo T, Inaba J, Shigemitsu S, Akatsuka T. Fetal heart variability indices and the accuracy of variability measurements. Am J Perinatol Rep 1987;4:179–86.
  • [43] Dawes GS, Visser GHA, Goodman JDS, Redman CWG. Numerical analysis of the human fetal heart rate: the quality of ultrasound records. Am J Obstet Gynecol 1981;141:43–52.
  • [44] Yeh SY, Forsythe A, Hon EH. Quantification of fetal heart rate beat-to-Beat interval differences. J Obstet Gynecol 1973;41:355–63.
  • [45] de Haan J, van Bemmel JH, Versteeg B, Veth AFL, Stolte LAM, Janssens J, et al. Quantitative evaluation of fetal heart rate patterns I. Processing methods. Eur J Obstet Gynecol Reprod Biol 1971;3:95–102.
  • [46] Zugaib M, Forsythe AB, Nuwayhid B, Lieb SM, Tabsh K, Erkkola R, et al. Mechanisms of beat-to-beat variability in the heart rate of the neonatal lamb I. Influence of the autonomic nervous system. Am J Obstet Gynecol 1980;138:444–52.
  • [47] Huey JR, Paul RH, Hadjiev AA, Jilek J, Hon EH. Fetal heart rate variability: an approach to automated assessment. Am J Obstet Gynecol 1979;134:691–5.
  • [48] van Geijn HP. Analysis of heart rate and beat-to-beat variability: interval difference index. Am J Obstet Gynecol 1980;138:246–52.
  • [49] Cesarelli M, Romano M, Bifulco P. Comparison of short term variability indexes in cardiotocographic foetal monitoring. Comput Biol Med 2009;39:106–18.
  • [50] Cesarelli M, Romano M, Bifulco P, Fedele F, Bracale M. An algorithm for the recovery of fetal heart rate series from CTG data. Comput Biol Med 2007;37(5):663–9.
  • [51] Goncalves H, Chaves J, Costa A, Ayres-de-Campos D, Bernardes J. Comparison of the effect of different sampling modes on computer analysis of cardiotocograms. Comput Biol Med 2015;64:62–6.
  • [52] Goncalves H, Costa A, Ayres-de-Campos D, Costa-Santos C, Rocha AP, Bernardes J. Comparison of real beat-to-beat signals with commercially available 4 Hz sampling on the evaluation of foetal heart rate variability. Med Biol Eng Comput 2013;51:665–76. http://dx.doi.org/10.1007/s11517-013-1036-7.
  • [53] Jezewski J, Kupka T, Horoba K. Extraction of fetal heart rate signal as time event series from evenly sampled data acquired using Doppler ultrasound technique. IEEE Trans Biomed Eng 2008;55(2):805–10.
  • [54] Parer WJ, Parer JT, Holbrook RH, Block SB. Validity of mathematical methods of quantitating FHR variability. Am J Obstet Gynecol 1985;153(4):402–9.
  • [55] Wilcox MA, Wang W, Sahota DS, Dawkins RR, Chung TKH, Chang AMZ. The effect of different sampling intervals on the measurement of intrapartum fetal heart rate variability. Obstet Gynecol 1997;89:577–80.
  • [56] Jezewski J, Wrobel J, Horoba K. Comparison of Doppler ultrasound and direct electrocardiography acquisition techniques for quantification of fetal heart variability. IEEE Trans Biomed Eng 2006;53:855–64.
  • [57] Seliger G, Stenzel A, Kowalski EM, Hoyer D, Nowack S, Seeger S, et al. Evaluation of standardized, computerized Dawes/Redman heart-rate analysis based on different recording methods and in relation to fetal beat-to-beat heart rate variability. J Perinat Med 2015;1–8.
  • [58] Dawes GS, Moulden M, Redman CW. Short-term fetal heart rate variation, decelerations, and umbilical flow velocity waveforms before labor. Obstet Gynecol 1992;80:673–8.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4e2ea2d3-e133-4fae-b3d1-40215b926f45
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.