Warianty tytułu
Języki publikacji
Abstrakty
In a small-scale field experiment, we estimated the contribution of aboveground litter to the energy budget of different collembolan and earthworm species. In a 50-year-old spruce plantation, the natural spruce litter was replaced by an equivalent amount of maize litter. The natural difference in the isotopic composition of carbon (C) between the spruce and maize allowed us to estimate the proportions of different carbon sources in the tissues of soil animals. The dependence on litter-derived C was least pronounced in Collembola having low δ15N values, indicating the feeding on non-vascular plants. In contrast, collembolans having high δ15N values belonged to the food chains based on fresh plant residuals. These results suggest that different species of litter-dwelling collembolans may regulate substantially different energy channels. Some species of endogeic earthworms (Aporrectodea rosea and A. caliginosa) utilize aboveground plant residues, though soil organic matter and other belowground sources of carbon prevail in the energy budget of their populations.
Czasopismo
Rocznik
Tom
Strony
172--180
Opis fizyczny
Bibliogr. 36 poz., wykr.
Twórcy
autor
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071 Russia, sz-85@mail.ru
autor
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071 Russia
Bibliografia
- 1. Albers D., Schaefer M., Scheu S. 2006 – Incorporation of plant carbon into the soil animal food web of an arable system – Ecology, 87: 235-245.
- 2. Anderson J. M. 1975 – The enigma of soil animal species diversity (In: Progress in soil zoology, Ed: J. Vanek) – Prague: Academia, pp. 51-58.
- 3. Berg M. P., Stoffer M., van den Huevel H. H. 2004 – Feeding guilds in Collembola based on digestive enzymes – Pedobiologia, 48: 589-601.
- 4. Briones M. J. I., Bol R. 2003 – Natural abundance of 13C and 15N in earthworms from different cropping treatments – Pedobiologia, 47: 560-567.
- 5. Chahartaghi M., Langel R., Scheu S., Ruess L. 2005 – Feeding guilds in Collembola based on nitrogen stable isotope ratios – Soil Biol. Biochem. 37: 1718-1725.
- 6. Christiansen K. 1964 – Bionomics of Collembola – Annu. Rev. Entomol. 9: 147-148.
- 7. Goncharov A. A, Tiunov A. V. 2013 – Trophic chains in soil – Biol. Bull. Revs. 4: 393-403.
- 8. Goncharov A. A., Tsurikov S. M., Potapov A. M., Tiunov A. V. 2016 – Short-term incorporation of freshly fixed plant carbon into the soil animal food web: field study in a spruce forest – Ecol. Res. 31: 923-933.
- 9. Hobbie E. A., Sanchez F. S., Rygiewicz P. T. 2012 – Controls of isotopic patterns in saprotrophic and ectomycorrhizal fungi – Soil Biol. Biochem. 48: 60-68.
- 10. Hobbie E. A Werner R. A. 2004 – Intramolecular, compound-specific, and bulk carbon isotope patterns in C-3 and C-4 plants: a review and synthesis – New Phytol. 161: 371-385.
- 11. Hopkin S. P. 1997 – Biology of the Springtails (Insecta: Collembola) – Oxford University Press, 333 pp.
- 12. Hoskins J. L., Janion-Scheepers C., Chown S. L, Duffy G. A. 2015 – Growth and reproduction of laboratory-reared neanurid Collembola using a novel slime mould diet – Sci. Reports, 5: 11957.
- 13. Klarner B., Ehnes R. B., Erdmann G., Eitzinger B., Pollierer M. M., Maraun M., Scheu S. 2014 – Trophic shift of soil animal species with forest type as indicated by stable isotope analysis – Oikos, 123: 1173-1181.
- 14. Maraun M., Erdmann G., Fischer B. M., Pollierer M. M., Norton R. A., Schneider K., Scheu S. 2011 – Stable isotopes revisited: their use and limits for oribatid mite trophic ecology – Soil Biol. Biochem. 43: 877-882.
- 15. Neilson R., Boag B., Smith M. 2000 – Earthworm δ13C and δ15N analyses suggest that putative functional classifications of earthworms are site-specific and may also indicate habitat diversity – Soil Biol. Biochem. 32: 1053-1061.
- 16. Ostle N., Briones M. J. I., Ineson P., Cole L., Staddon P., Sleep D. 2007 – Isotopic detection of recent photosynthate carbon flow into grassland rhizosphere fauna – Soil Biol. Biochem. 39: 768-777.
- 17. Pokarzhevskii A. D., van Straalen N. M., Zaboev D. P., Zaitsev A. S. 2003 – Microbial links and element flows in nested detrital food webs – Pedobiologia, 47: 213-224.
- 18. Pollierer M. M., Dyckmans J., Scheu S., Haubert D. 2012 – Carbon flux through fungi and bacteria into the forest soil animal food web as indicated by compound-specific 13C fatty acid analysis – Funct. Ecol. 26: 978-990.
- 19. Pollierer M. M., Langel R., Korner C., Maraun M., Scheu S. 2007 – The underestimated importance of belowground carbon input for forest soil animal food webs – Ecol. Lett. 10: 729-736.
- 20. Pollierer M. M., Langel R., Scheu S., Maraun M. 2009 – Compartmentalization of the soil animal food wed as indicated by dual analysis of stable isotope ratios (15N/14N and 13C/12C) – Soil Biol. Biochem. 41: 1221-1226.
- 21. Ponge J. F. 2000 – Vertical distribution of Collembola (Hexapoda) and their food resources in organic horizons of beech forests – Biol. Fert. Soils. 32: 508-522.
- 22. Poole T. B. 1959 – Studies on the food of Collembola in a Douglas fir plantation – P. Zool. Soc. Lond. 132: 71-82.
- 23. Potapov A. M., Goncharov A. A., Tsurikov S. M., Tully T., Tiunov A. V. 2016a – Assimilation of plant-derived freshly fixed carbon by soil collembolans: Not only via roots? – Pedobiologia, 59: 189-193.
- 24. Potapov A. A., Semenina E. E., Korotkevich A. Yu, Kuznetsova N. A., Tiunov A. V. 2016b – Connecting taxonomy and ecology: trophic niches of collembolans as related to taxonomic identity and life forms – Soil Biol. Biochem. 101: 20-31.
- 25. Potapov A. M., Korotkevich A. Yu, Tiunov A. V. 2018 – Non-vascular plants as a food source for litter-dwelling Collembola: field evidence – Pedobiologia, 66: 11-17.
- 26. Potapov A. M., Tiunov A. V. 2016 – Stable isotope composition of mycophagous collembolans versus mycotrophic plants: do soil invertebrates feed on mycorrhizal fungi? – Soil Biol. Biochem. 93: 115-118.
- 27. Potapov A. M., Tiunov A. V., Scheu S. 2019 – Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition – Biol. Rev. 94: 37-59.
- 28. Rozanova O. L., Tsurikov S. M., Tiunov A. V., Semenina E. E. 2019 – Arthropod rain in a temperate forest: Intensity and composition – Pedobiologia, 78: 52-56.
- 29. Scheu S., Schaefer M. 1998 – Bottom-up control of the soil macrofauna community in a beechwood on limestone: manipulation of food resources – Ecology, 79: 1573-1585.
- 30. Schmidt O., Curry J. P., Dyckmans J., Rota E., Scrimgeour C. M. 2004 – Dual stable isotope analysis (δ13C and δ15N) of soil invertebrates and their food sources – Pedobiologia, 48: 171-180.
- 31. Schmidt O., Dyckmans J., Schrader S. 2016 – Photoautotrophic microorganisms as a carbon source for temperate soil invertebrates – Biol Lett. 12: 20150646.
- 32. Semenina E. E., Tiunov A. V. 2011 – Trophic fractionation (Δ15N) in Collembola depends on nutritional status: a laboratory experiment and mini-review – Pedobiologia, 54: 101-109.
- 33. Semenyuk I. I., Tiunov A. V. 2019 – Foraging behaviour as a mechanism for trophic niche separation in a millipede community of southern Vietnam – Eur. J. Soil Biol. 90: 36-43.
- 34. Shilenkova O. L., Tiunov A. V. 2014 – Assimilation of labile carbon and particulate organic matter by tropical endogeic earthworms Pontoscolex corethrurus (Glossoscolecidae, Oligochaeta) – Biol. Bull. 42: 696-701.
- 35. Tiunov A. V., Scheu S. 2004 – Carbon availability controls the growth of detritivores (Lumbricidae) and their effect on nitrogen mineralization – Oecologia, 138: 83-90.
- 36. Wardle D. A., Karl B. J., Beggs J. R., Yeates G. W., Williamson W. M., Bonnek K. I. 2010 – Determining the impact of scale insects honeydew, and invasive wasps and rodents, on the decomposer subsystem in a New Zealand beech forest – Biol. Invasions. 12: 2619-2638.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4e2a0dbc-8f7c-4c59-9582-76bf490242c4