Warianty tytułu
Języki publikacji
Abstrakty
Wirelessly networked systems of sensors could enable revolutionary applications at the intersection of biomedical science, networking and control systems. It has a strong potential to take ahead the applications of wireless sensor networks. In this paper, a wireless brain computer interface (BCI) framework for drowsiness detection is proposed, which uses electroencephalogram (EEG) signals produced from the brain wave sensors. The proposed BCI framework comprises of a braincap containing EEG sensors, wireless signal acquisition unit and a signal processing unit. The signal processing unit continuously monitor the preprocessed EEG signals and to trigger a warning tone if a drowsy state happens. This experimental setup provides longer time EEG monitoring and drowsiness detection by incorporating the clustering mechanism into the wireless networks.
Czasopismo
Rocznik
Tom
Strony
276--284
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr.
Twórcy
autor
- Department of Computer Science and Engineering, National Institute of Technology, Rourkela, India, asistripathy@gmail.com
autor
- Department of Computer Science and Engineering, National Institute of Technology, Rourkela, India, suchi.nitrkl@gmail.com
autor
- Department of Electrical and Computer Engineering, San Diego State University, CA, USA, mahasweta@gmail.com
Bibliografia
- [1] Qiang J, Zhiwei Z, Lan P. Real-time nonintrusive monitoring and prediction of driver fatigue. IEEE Trans Veh Technol 2004;53:1052–68.
- [2] Flores M, Armingol J, Escalera A. Real-time drowsiness detection system for an intelligent vehicle. IEEE Intelligent Vehicles Symposium. 2008. pp. 637–42.
- [3] Lin C, Chang C, Lin B, Hung S, Chao C, Wang I. A real-time wireless brain–computer interface system for drowsiness detection. IEEE Trans Biomed Circ Syst 2010;4:214–22.
- [4] Eskandarian A, Mortazavi A. Evaluation of a smart algorithm for commercial vehicle driver drowsiness detection. IEEE Intelligent Vehicles Symposium. 2007. pp. 553–9.
- [5] Lotte F, Congedo M, Lecuyer A, Lamarche F, Arnaldi B. A review of classification algorithms for EEG bases brain computer interface. Hum Factors 2007;4.
- [6] NHTSA National Highway Traffic Safety Administration. Washington, DC; 2014 [online]. Available from: http://www.nhtsa.dot.gov/.
- [7] Sleep facts and stats, National Sleep Foundation. Washington, DC; 2014 [online]. Available from: http://www.sleepfoundation.org/.
- [8] Filipe S, Charvet G, Foerster M, et al. A wireless multichannel EEG recording platform. Engineering in Medicine and Biology Society, EMBC. 2011. pp. 6319–22.
- [9] Hong T, Qin H. Drivers drowsiness detection in embedded system. IEEE International Conference on Vehicular Electronics and Safety, ICVES. 2007. pp. 1–5.
- [10] Orden KV, Limbert W, Makeig S, Jung TP. Eye activity correlates of workload during a visual spatial memory task. Hum Factors 2001;43:111–21.
- [11] Heinzelman W, Chandrakasan A, Balakrishnan H. An application-specific protocol architecture for wireless microsensor networks. IEEE Trans Wireless Commun 2002;1:660–70.
- [12] Bashyal S, Venayagamoorthy GK. Collaborative routing algorithm for wireless sensor network longevity. IEEE 3rd International Conference on Intelligent Sensors, Sensor Networks and Information. 2007. pp. 515–20.
- [13] Sucholeiki R. EEG description. http://emedicine.medscape.com/article/1139332-overview# aw2aab6b3 [accessed 20.01.15].
- [14] Mardia KV. Mardia's test of multinormality in encyclopedia of statistical sciences; 1985.
- [15] Farshchi S, Nuyujukian P, Pesterev A, Mody I, Judy J. A TinyOS-enabled MICA2-basedwireless neural interface. IEEE Trans Biomed Eng 2006;53:1416–24.
- [16] Yan N, Wang J, Liu MY, Zong L, Jiao YF, Yue J, et al. Designing a brain–computer interface device for neurofeedback using virtual environments. J Med Biol Eng 2008;28:167–72.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4e240189-63e8-43c2-a03e-0077af22a683