Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, nr 7 | 137--150
Tytuł artykułu

Valorization of Iron Ore Tailings from Nador, Morocco, as a Sustainable Additive in the Manufacture of Red Clay Fired Bricks

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
High iron ore production generates substantial solid waste. Storing this waste in dams poses environmental issues and safety risks for the population. The aim of this study was to valorize sterile waste (IOT) from an inactive iron mine in the Nador region of northeastern Morocco, as an additive in the manufacture of fired bricks made from a red clay (AJH) extracted from the Oujda region. For this purpose, brick specimens were obtained using a mix of a 40% of AJH and 60% of IOT. Physico-chemical, geotechnical and mineralogical characterization techniques were applied to qualify raw material. IOT consisted of hematite, magnetite, pyrite, jarosite and quartz and AJH of kaolinite, chlorite, calcite, hematite, dolomite, quartz and vermiculite. After firing the specimens at 500°C, 850°C and 1100°C, mineralogical composition, bulk density, compressive strength and microstructure behavior of the specimens was assessed. The compressive strength of the bricks containing IOT is 1.25 MPa at T=500°C and it varies little at 1100°C. The compressive strength of the reference sample is 2.94 MPa at 1100°C. The material has low vitrification and greater porosity compared to the reference bricks. Adding IOT brings significant changes to the color of fired bricks.
Słowa kluczowe
Wydawca

Rocznik
Strony
137--150
Opis fizyczny
Bibliogr. 62 poz., rys., tab.
Twórcy
  • Laboratory Physico-Chemistry of Processes and Materials (PCPM), Research Team: Geology of Mining and Energy Resources (GRME), Hassan First University, Faculty of Sciences and Technology, 26002, Settat, Morocco, f.elkhazanti@uhp.ac.ma
  • Laboratory Physico-Chemistry of Processes and Materials (PCPM), Research Team: Geology of Mining and Energy Resources (GRME), Hassan First University, Faculty of Sciences and Technology, 26002, Settat, Morocco, ahmed.rachid@uhp.ac.ma
  • Applied Geosciences Laboratory, Faculty of Sciences, University Mohammed First, Mohammed V Avenue, Oujda, P.O. Box 60000, Morocco
  • Laboratory of Applied Chemistry and Environment, Team of Mineral Solid Chemistry, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco, dounia.azerkane@ump.ac.ma
  • Laboratory Physico-Chemistry of Processes and Materials (PCPM), Research Team: Geology of Mining and Energy Resources (GRME), Hassan First University, Faculty of Sciences and Technology, 26002, Settat, Morocco
Bibliografia
  • 1. Adamou, J.M.K., Ntouala, R.F.D., Effoudou, E.N., Bineli, M.T.N., Ze, A.N.O., Hamadjida, G., Onana, V.L. 2023. Mineralogical, geochemical, and geotechnical features of lateritic soils from termite mounds in two contrasting savannah areas (central Cameroon) as raw materials for brick making. Heliyon, 9(6). https://doi.org/10.1016/j.heliyon.2023.e17257
  • 2. Agboola, O., Babatunde, D.E., Fayomi, O.S.I., Sadiku, E.R., Popoola, P., Moropeng, L., Yahaya A., Mamudu, O.A. 2020. A review on the impact of mining operation: Monitoring, assessment and management. Results in Engineering, 8, 100181. https://doi.org/10.1016/j.rineng.2020.100181
  • 3. Aracena, A., Jerez, O. 2021. Mechanism and kinetics of pyrite transformation at elevated temperatures. Physicochemical Problems of Mineral Processing, 57. http://dx.doi.org/10.37190/ppmp/143124
  • 4. Bataleva, Y.V., Palyanov, Y.N., Borzdov, Y.M., Bayukov, O.A., Zdrokov, E.V. 2017. Iron carbide as a source of carbon for graphite and diamond formation under lithospheric mantle PT parameters. Lithos, 286, 151–161. https://doi.org/10.1016/j.lithos.2017.06.010
  • 5. Bauluz, B., Mayayo, M.J., Yuste, A., FernandezNieto, C., Lopez, J.G. 2004. TEM study of mineral transformations in fired carbonated clays: relevance to brick making. Clay Minerals, 39(3), 333–344. https://doi.org/10.1180/0009855043930138
  • 6. Bengamra, S., Oujidi, M. 2015. Mineralogy of atmospheric dust deposits in the Naima-El Aioun basin (Eastern Morocco). J. Mater. Environ. Sci. 6(8) 2076–2082
  • 7. Bouabdellah, M., Jabrane, R., Margoum, D., Sadequi, M. 2016. Skarn to porphyry-epithermal transition in the Ouixane Fe District, Northeast Morocco: interplay of meteoric water and magmatic-hydrothermal f luids. Mineral Deposits of North Africa, 201–225. https://doi.org/10.1007/978-3-319-31733-5_7
  • 8. Bouabdellah, M., Lebret, N., Marcoux, E., Sadequi, M. 2012. Les mines des Beni Bou Ifrour-Ouixane (Rif Oriental): un district ferrugineux néogène de type skarns The Beni Bou Ifrour-Ouixane mines (Eastern Rif), Neogene Skarn Type Iron Deposits. Nouveaux Guides Géologiques et miniers du Maroc, 357–362.
  • 9. Cobîrzan, N., Muntean, R., Thalmaier, G., Felseghi, R.A. 2022. Recycling of mining waste in the production of masonry units. Materials, 15(2), 594. https://doi.org/10.3390/ma15020594
  • 10. Crespo-López, L., Coletti, C., Arizzi, A., Cultrone, G. 2024. Effects of using tea waste as an additive in the production of solid bricks in terms of their porosity, thermal conductivity, strength and durability. Sustainable Materials and Technologies, 39, e00859. https://doi.org/10.1016/j.jmrt.2023.03.189
  • 11. Cultrone, G., Rosua, F. J. C. 2020. Growth of metastable phases during brick firing: Mineralogical and microtextural changes induced by the composition of the raw material and the presence of additives. Applied Clay Science, 185, 105419. https://doi.org/10.1016/j.clay.2019.105419
  • 12. Dana, K., Rakib, S.A., Sinhamahapatra, S. 2023. Effect of oxide additives on densification of terracotta. Applied Clay Science, 245, 107147. https://doi.org/10.1016/j.clay.2023.107147
  • 13. De Donato, P., Kongolo, M., Barres, O., Yvon, J., Enderle, F., Bouquet, E., Alnot M., Cases, J.M. 1999. Chemical surface modifications of sulphide minerals after comminution. Powder Technology, 105(1–3), 141-148. https://doi.org/10.1016/S0032-5910(99)00129-1
  • 14. Derycke, V., Kongolo, M., Benzaazoua, M., Mallet, M., Barrès, O., De Donato, P., Bussière B., Mermillod-Blondin, R. 2013. Surface chemical characterization of different pyrite size fractions for f lotation purposes. International Journal of Mineral Processing, 118, 1–14. https://doi.org/10.1016/j.minpro.2012.10.004
  • 15. Du, G.X., Zuo, R.F., Guo, W.J., Liao, J.H. 2012. Preparation of construction bricks from iron ore tailings. Advanced Materials Research, 557, 839844. https://doi.org/10.4028/www.scientific.net/AMR.557-559.839
  • 16. Duggen, S., Hoernle, K., van den Bogaard, P., Garbe-Schönberg, D. 2005. Post-collisional transition from subduction-to intraplate-type magmatism in the westernmost Mediterranean: evidence for continental-edge delamination of subcontinental lithosphere. Journal of Petrology, 46(6), 1155–1201. https://doi.org/10.1093/petrology/egi013
  • 17. El Bakkali, S., Gourgaud, A., Bourdier, J.L., Bellon, H., Gundogdu, N. 1998. Post-collision neogene volcanism of the Eastern Rif (Morocco): magmatic evolution through time. Lithos, 45(1–4), 523–543. https://doi.org/10.1016/S0024-4937(98)00048-6
  • 18. El Ouahabi, M., Daoudi, L., Hatert, F., Fagel, N. 2015. Modified mineral phases during clay ceramic f iring. Clays and Clay Minerals, 63(5), 404–413. https://doi.org/10.1346/CCMN.2015.0630506
  • 19. Elinwa, A. U., Mohammed, A. S., Mohammed, A. B. 2021. Effects of the Addition of Sawdust Ash and Iron Ore Tailings on the Characteristics of Clay Soil. Journal of Building Material Science, 3(2), 27–38. https://doi.org/10.30564/jbms.v3i2.3732
  • 20. EN 1998. EN. B.1097-3. Tests for mechanical and physical properties of aggregates. Determination of loose bulk density and voids, British Standards Institution.
  • 21. He, D., Jiang, F., Fu, X., Liu, R., Han, H., Sun, W., Niu, Z., Yue, T. 2023. Recycling of hazardous jarosite residues based on hydrothermal crystal transformation. Waste Management, 172, 290–298. https://doi.org/10.1016/j.wasman.2023.10.026
  • 22. Islam, K., Murakami, S. 2021. Global-scale impact analysis of mine tailings dam failures: 19152020. Global Environmental Change, 70, 102361. https://doi.org/10.1016/j.gloenvcha.2021.102361
  • 23. Jusnes, K.F., Tangstad, M., Ringdalen, E. 2021. Phase transformations in quartz used in silicon and ferrosilicon. Aspects in Mining & Mineral Science 5(5). http://dx.doi.org/10.31031/AMMS.2020.05.000622
  • 24. Kerchaoui, S. 1985. Etude géologique et structurale du massif des Beni Bou Ifrour (Rif oriental, Maroc) (Doctoral dissertation, Paris 11) (in frensh).
  • 25. Khafouri, A., Talbi, E. H., Abdelouas, A. 2021. Assessment of heavy metal contamination of the environment in the mining site of Ouixane (North East Morocco). Water, Air, & Soil Pollution, 232(10), 398. https://doi.org/10.1007/s11270-021-05318-6
  • 26. Laita, E., Bauluz, B., Yuste, A. 2019. High-temperature mineral phases generated in natural clinkers by spontaneous combustion of coal. Minerals, 9(4), 213. https://doi.org/10.3390/min9040213
  • 27. Lebret, N. 2014. Contexte structural et métallogénique des skarns à magnétite des Beni Bou Ifrour (Rif oriental, Maroc) Apports à l’évolution géodynamique de la Méditerranée occidentale (Doctoral dissertation, Université d’Orléans).
  • 28. Li, Y., Liu, L., Deng, Y., Chen, Y., Li, Y., Wu, J. 2023. Unlocking the potential of iron ore tailings in controlled low-strength material: Feasibility, performance, and evaluation. Journal of Cleaner Production, 423, 138772. https://doi.org/10.1016/j. jclepro.2023.138772
  • 29. Liu, T., Lin, C., Liu, P., Liu, J., Li, C., Han, L., Zhou, X., Yang, Q., Lu, A. 2019. Preparation and characterization of partially vitrified ceramic material. Journal of Non-Crystalline Solids, 505, 92–101. https://doi.org/10.1016/j.jnoncrysol.2018.10.019
  • 30. Milheiro, F.A.C., Freire, M.N., Silva, A.D., Holanda, J.N.F. 2005. Densification behaviour of a red f iring Brazilian kaolinitic clay. Ceramics International, 31(5), 757–763. https://doi.org/10.1016/j.ceramint.2004.08.010
  • 31. Monteiro, S.N., Vieira, C.M.F. 2014. On the production of fired clay bricks from waste materials: A critical update. Construction and Building Materials, 68, 599–610. https://doi.org/10.1016/j.conbuildmat.2014.07.006
  • 32. Moon, S., Kim, E., Noh, S., Triwigati, P.T., Choi, S., Park, Y. 2024. Carbon Mineralization of Steel and Iron-Making Slag: Paving the Way for a Sustainable and Carbon-Neutral Future. Journal of Environmental Chemical Engineering, 112448. https://doi.org/10.1016/j.jece.2024.112448
  • 33. Mortier, F., Quang, N., Sadek, M. 1967. Hydrogéologie des formations volcaniques du nord-est du Maroc. Service des Ressources en Eau de l’Office National des Irrigations du Maroc, 327–333.
  • 34. Mota, L., Toledo, R., Machado, F.A.L., Holanda, J. N.F., Vargas, H., Faria Jr, R.T. 2008. Thermal characterisation of red clay from the Northern Region of Rio de Janeiro State, Brazil using an open hotoacoustic cell, in relation to structural changes on firing. Applied Clay Science, 42(1–2), 168–174. https://doi.org/10.1016/j.clay.2008.01.010
  • 35. Moujoud, Z., Harrati, A., Manni, A., Naim, A., El Bouari, A., Tanane, O. 2023. Study of fired clay bricks with coconut shell waste as a renewable poreforming agent: Technological, mechanical, and thermal properties. Journal of Building Engineering, 68, 106107. https://doi.org/10.1016/j.jobe.2023.106107
  • 36. Nakamura, H., Sato, S., Hara, Y. 1994. The oxidation of pyrite. Journal of hazardous materials, 37(2), 253–263. https://doi.org/10.1016/0304-3894(93)E0095-J
  • 37. NF, 1992. NF. P. 94-057-Analyse granulométrique des sols-Méthode par sédimentation. Norme Française, AFNOR, Paris.
  • 38. NF, (1997). NF EN 933-1., 1997. Essais pour déterminer les caractéristiques géométriques des granulats, Partie 1 : Détermination de la granularité Analyse granulométrique par tamisage, AFNOR, Paris
  • 39. Nodari, L., Marcuz, E., Maritan, L., Mazzoli, C., Russo, U. 2007. Hematite nucleation and growth in the firing of carbonate-rich clay for pottery production. Journal of the European Ceramic Society, 27(16), 4665–4673. https://doi.org/10.1016/j. jeurceramsoc.2007.03.031
  • 40. Pardo, F., Meseguer, S., Jordán, M.M., Sanfeliu, T., González, I. 2011. Firing transformations of Chilean clays for the manufacture of ceramic tile bodies. Applied Clay Science, 51(1–2), 147–150. https://doi.org/10.1016/j.clay.2010.11.022
  • 41. Petlovanyi, M., Malashkevych, D., Sai, K., Bulat, I., Popovych, V. 2021. Granulometric composition research of mine rocks as a material for backfilling the mined-out area in coal mines. Mining of Mineral Deposits. 15(4), 122–129. http://ir.nmu.org.ua/handle/123456789/160814
  • 42. Phonphuak, N., Chindaprasirt, P. 2015. Types of waste, properties, and durability of pore-forming waste-based fired masonry bricks. Eco-efficient masonry bricks and blocks, 103–127. https://doi.org/10.1016/B978-1-78242-305-8.00006-1
  • 43. Phonphuak, N., Kanyakam, S., Chindaprasirt, P. 2016. Utilization of waste glass to enhance physical–mechanical properties of fired clay brick. Journal of Cleaner production, 112, 3057–3062. https://doi.org/10.1016/j.jclepro.2015.10.084
  • 44. Ponomar, V.P., Bagmut, M.M., Kalinichenko, E. A., Brik, A. B. 2020. Experimental study on oxidation of synthetic and natural magnetites monitored by magnetic measurements. Journal of Alloys and Compounds, 848, 156374. https://doi.org/10.1016/j.jallcom.2020.156374
  • 45. Ranängen, H., Lindman, Å. 2017. A path towards sustainability for the Nordic mining industry. Journal of Cleaner Production, 151, 43–52. https://doi.org/10.1016/j.jclepro.2017.03.047
  • 46. Rhazi, M.E., Hayashi, K.I. 2002. Mineralogy, geochemistry, and age constraints on the Beni Bou Ifrour skarn type magnetite deposit, northeastern Morocco. Resource Geology, 52(1), 25–39. https://doi.org/10.1111/j.1751-3928.2002.tb00114.x
  • 47. Roger, S., Münch, P., Cornée, J. J., Saint Martin, J.P., Féraud, G., Pestrea, S., Conesa G., Moussa, A.B. 2000. 40Ar/39Ar dating of the pre-evaporitic Messinian marine sequences of the Melilla basin (Morocco): a proposal for some biosedimentary events as isochrons around the Alboran Sea. Earth and Planetary Science Letters, 179(1), 101–113. https://doi.org/10.1016/S0012-821X(00)00094-7
  • 48. Sarkar, R., Singh, N., Das Kumar, S. 2010. Utilization of steel melting electric arc furnace slag for development of vitreous ceramic tiles. Bulletin of Materials Science, 33, 293–298. https://doi.org/10.1007/s12034-010-0045-5
  • 49. Shawar, L., Halevy, I., Said-Ahmad, W., Feinstein, S., Boyko, V., Kamyshny, A., Amrani, A. 2018. Dynamics of pyrite formation and organic matter sulfurization in organic-rich carbonate sediments. Geochimica et Cosmochimica Acta, 241, 219–239. https://doi.org/10.1016/j.oregeorev.2016.09.002
  • 50. Singh, D., Kumar, R., Nighot, N.S., Rajput, A., Prajapati, A., Singh, B.K., Kirgiz, M.S., Srinivasaraonaik, B., Khans, S., Mishra, R.K., Lakhani, R. 2023. A comprehensive review on valorisation of octal by-product as supplementary admixtures in the production of fired and unfired bricks. Construction and Building Materials, 408, 133641. https://doi.org/10.1016/j.conbuildmat.2023.133641
  • 51. Taha, Y., Benzaazoua, M., Mansori, M., Yvon, J., Kanari, N., Hakkou, R. 2016. Manufacturing of ceramic products using calamine hydrometallurgical processing wastes. Journal of Cleaner Production, 127, 500510. https://doi.org/10.1016/j.jclepro.2016.04.056
  • 52. Thejas, H.K., Hossiney, N. 2022. Alkali-activated bricks made with mining waste iron ore tailings. Case Studies in Construction Materials, 16, e00973. https:// doi.org/10.1016/j.cscm.2022.e00973
  • 53. Trindade, M.J., Dias, M.I., Coroado, J., Rocha, F. 2009. Mineralogical transformations of calcareous rich clays with firing: A comparative study between calcite and dolomite rich clays from Algarve, Portugal. Applied Clay Science, 42(3–4), 345–355. https://doi.org/10.1016/j.clay.2008.02.008
  • 54. Valenta, R.K., Lèbre, É., Antonio, C., Franks, D. M., Jokovic, V., Micklethwaite, S., Parbhakar-Fox, A., Runge, K., Savinova, E., Segura-Salazar, J., Stringer, M., Verster, I., Yahyaei, M. 2023. Decarbonisation to drive dramatic increase in mining waste–Options for reduction. Resources, Conservation and Recycling, 190, 106859. https://doi.org/10.1016/j.resconrec.2022.106859
  • 55. Villand, J. C. 1966. Etude pétrographique dans le Beni Bou Ifrour, Maroc Nord oriental. Rapport Note, BRPM, 24.
  • 56. Walshe, J.L., Solomon, M. 1981. An investigation into the environment of formation of the volcanichosted Mt. Lyell copper deposits using geology, mineralogy, stable isotopes, and a six-component chlorite solid solution model. Economic Geology, 76(2), 246284. https://doi.org/10.2113/gsecongeo.76.2.246
  • 57. Weng, C. H., Lin, D. F., Chiang, P. C. 2003. Utilization of sludge as brick materials. Advances in environmental research, 7(3), 679–685. https://doi.org/10.1016/S1093-0191(02)00037-0
  • 58. Xu, F., Wang, S., Li, T., Liu, B., Li, B., Zhou, Y. 2021. Mechanical properties and pore structure of recycled aggregate concrete made with iron ore tailings and polypropylene fibers. Journal of Building Engineering, 33, 101572. https://doi.org/10.1016/j.jobe.2020.101572
  • 59. Young, G., Yang, M. 2019. Preparation and characterization of Portland cement clinker from iron ore tailings. Construction and Building Materials, 197, 152–156. https://doi.org/10.1016/j.conbuildmat.2018.11.236
  • 60. Zhang, L. 2013. Production of bricks from waste materials–A review. Construction and building materials, 47, 643–655. https://doi.org/10.1016/j.conbuildmat.2013.05.043
  • 61. Zhang, Y., Li, Z., Gu, X., Nehdi, M. L., Marani, A., Zhang, L. 2023. Utilization of iron ore tailings with high volume in green concrete. Journal of Building Engineering, 72, 106585. https://doi.org/10.1016/j. jobe.2023.106585
  • 62. Zhao, J., Ni, K., Su, Y., Shi, Y. 2021. An evaluation of iron ore tailings characteristics and iron ore tailings concrete properties. Construction and Building Materials, 286, 122968. https://doi.org/10.1016/j.conbuildmat.2021.122968
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4e1682fb-a0a6-4186-a2ef-3332832f8e36
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.