Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | R. 22, nr 3 | 184--188
Tytuł artykułu

Influence of sonication on graphite and glassy carbon particle size distribution in epoxy matrix and mechanical properties of produced composites

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the following study the influence of the ultrasonic treatment of graphite and glassy carbon powder reinforcement on epoxy composites was examined. Sonication treatment was applied to ethanol dispersions of graphite and glassy carbon respectively. After ultrasound treatment the dispersions were dried at the temperature of 70°C. Subsequently, the graphite and glassy carbon powders were mechanically extracted. The produced powders were then analyzed – the grain size distributions of the pre- and post-treatment powders were compared. The results show that the grain sizes of the sonicated graphite decreased, while the glassy carbon particles were not significantly influenced. Epoxy resin composites were made with the pre- and post-treatment powders as reinforcement. The mechanical properties of the prepared composites were examined using a Brinell hardness tester and a tensile tester. The results show slight changes in the mechanical properties of the composites reinforced with the sonicated powders in comparison to the non-sonicated powders and the neat resin samples.
Wydawca

Rocznik
Strony
184--188
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
  • Silesian University of Technology, Faculty of Materials Engineering, ul. Z. Krasińskiego 8, 40-019 Katowice, Poland, Jakub.Jala@polsl.pl
Bibliografia
  • [1] Cayambe M., Zambrano C., Tene T., Guevara M., Tubon Usca G., Brito H., Molina R., Coello-Fiallos D., Caputi L.S., Vacacela Gomez C., Dispersion of graphene in ethanol by sonication, Materials Today: Proceedings 2020, DOI: 10.1016/j.matpr.2020.06.441.
  • [2] Giglio C.S., Osazuwa O., Kontopoulou M., Docoslis A., Achieving high yield of graphene nanoplatelets in poloxamer-assisted ultrasonication of graphite in water, Journal of Colloid and Interface Science 2019, 539, 107-117, DOI: 10.1016/j.jcis.2018.12.033.
  • [3] Puangbuppha B., Limsuwan P., Asanithi P., Non-chemically functionalized graphene exfoliated from graphite in water using ultrasonic treatment, Procedia Engineering 2012, 32, 1094-1099, DOI: 10.1016/j.proeng.2012.02.060.
  • [4] Güler Ö., Tekeli M., Taşkın M., Güler S.H., Yahia I.S., The production of graphene by direct liquid phase exfoliation of graphite at moderate sonication power by using low boiling iquid media: The effect of liquid media on yield and optimization, Ceramics International 2020, DOI: 10.1016/j.ceramint.2020.08.159.
  • [5] Durge R., Kshirsagar R.V., Tambe P., Effect of sonication energy on the yield of graphene nanosheets by liquid-phase exfoliation of graphite, Procedia Engineering 2014, 97, 1457- 1465, DOI: 10.1016/j.proeng.2014.12.429.
  • [6] Silva L.I., Mirabella D.A., Tomba J.P., Riccardi C.C., Optimizing graphene production in ultrasonic devices, Ultrasonics 2020, 100, 105989, DOI: 10.1016/j.ultras.2019.105989.
  • [7] Htwe Y.Z.N., Chow W.S., Suda Y., Thant A.A., Mariatti M., Effect of electrolytes and sonication times on the formation of graphene using an electrochemical exfoliation process, Applied Surface Science 2018, DOI: 10.1016/j.apsusc.2018.11.029.
  • [8] Soltani T., Lee B.K., A benign ultrasonic route to reduced graphene oxide from pristine graphite, Journal of Colloid and Interface Science 2016, DOI: 10.1016/j.jcis.2016.09.075.
  • [9] Navik R., Gai Y., Wang W., Zhao Y., Curcumin-assisted ultrasound exfoliation of graphite to graphene in ethanol, Ultrasonics Sonochemistry 2018, DOI: 10.1016/j.ultsonch.2018.05.010.
  • [10] Alaferdov A.V., Savu R., Canesqui M.A., Kopelevich Y.V., da Silva R.R., Rozhkova N.N., Pavlov D.A., Usov Y., de Trindade G.M., Moshkalev S.A., Ripplocation in graphite nanoplatelets during sonication assisted liquid phase exfoliation, Carbon 2018, DOI: 10.1016/j.carbon.2017.12.100.
  • [11] Karikalan N., Elavarasan M., Yang T.C.K., Effect of cavittion erosion in the sonochemical exfoliation of activated graphite for electrocatalysis of acebutolol, Ultrasonics Sonochemistry 2019, 56, 297-304, DOI: 10.1016/j.ultsonch.2019.04.025.
  • [12] Thamer S., Al.-Tamimi B.H., Farid S.B.H., Preparation of graphene nano-sheets from graphite flakes via milling-ultrasonication promoted process, Materials Today: Proceedings 2020, DOI: 10.1016/j.matpr.2019.09.192.
  • [13] González J.R., Alcántara R., Nacimiento F., Tirado J.L., CoSn-graphite electrode material prepared by using the polyol method and high-intensity ultrasonication, Electrochimica Acta 2011, 56, 9808-9817, DOI: 10.1016/j.electacta.2011.08.081.
  • [14] Yu G., Huang X., Zou C., Chen L., Hu B., Ye L., Preparation of graphite@Cu powders from ultrasonic powdering technique, Advanced Powder Technology 2012, 23, 16-21, DOI: 10.1016/j.apt.2010.11.010.
  • [15] Tafoya J.P.V., Doszczeczko S., Titirici M.M., Sobrido A.B.J., Enhancement of the electrocatalytic activity for the oxygen reduction reaction of boron-doped reduced graphene oxide via ultrasonic treatment, International Journal of Hydrogen Energy 2022, 47, 8, 5462-5473, DOI: 10.1016/j.ijhydene.2021.11.127.
  • [16] Lahiri S., Mandal D., Biswas S., Gogate P.R., Bhardwaj R.L., Sonocatalytic recovery of ceria from graphite and inhibition of graphite erosion by ionic liquid based Platinum nanocatalyst, Ultrasonics Sonochemistry 2022, 82, 105863, DOI: 10.1016/j.ultsonch.2021.105863.
  • [17] Mirza-Aghayan M., Kashef-Azar E., Boukherroub R., Graphite oxide: an efficient reagent for oxidation of alcohols under sonication, Tetrahedron Letters 2012, 53, 4962-4965, DOI: 10.1016/j.tetlet.2012.07.016.
  • [18] Mao S., Bao R., Fang D., Yi J., Fabrication of sliver/ graphitic carbon nitride photocatalyst with enhanced visible-light photocatalytic efficiency through ultrasonic spray atomization, Journal of Colloid and Interface Science 2019, 538, 15-24, DOI: 10.1016/j.jcis.2018.11.078.
  • [19] Barma S.D., Baskey P.K., Rao D.S., Sahu S.N., Ultrasonic-assisted flotation for enhancing the recovery of flaky graphite from low-grade graphite ore, Ultrasonics – Sonochemistry 2019, 56, 386-396, DOI: 10.1016/j.ultsonch.2019.04.033.
  • [20] Kozioł M., Toroń B., Szperlich P., Jesionek M., Fabrication of a piezoelectric strain sensor based on SbSI nanowires as a structural element of a FRP laminate, Composites Part B 2019, 157, 58-65, DOI: 10.1016/j.compositesb.2018.08.105.
  • [21] Toroń B., Szperlich P., Kozioł M., SbSI composites based on epoxy resin and cellulose for energy harvesting and sensors – The influence of SbSI nanowires conglomeration on piezoelectric properties, Materials 2020, 13, 902, DOI: 10.3390/ma13040902.
  • [22] Mistewicz K., Jesionek M., Kim H.J., Hajra S., Kozioł M., Chrobok Ł., Wang X., Nanogenerator for determination of acoustic power in ultrasonic reactors, Ultrasonics Sonochemistry 2021, 78, 105718, DOI: 10.1016/j.ultsonch.2021.105718.
  • [23] Uskokovic V., A historical review of glassy carbon: Synthesis, structure, properties and applications, Carbon Trends 2021, 5, 100116, DOI: 10.1016/j.cartre.2021.100116.
  • [24] Myalski J., Godzierz M., Olesik P., Effect of carbon fillers on the wear resistance of PA6 thermoplastic composites, Polymers 2020, 12, 2264, DOI: 10.3390/polym12102264.
  • [25] Olesik P., Kozioł M., Jała J., Processing and structure of HDPE/Glassy carbon composite suitable for 3D printing, Composites Theory and Practice 2020, 20(2).
  • [26] Olesik P., Godzierz M., Kozioł M., Jała J., Szeluga U., Myalski J., Structure and mechanical properties of high-density polyethylene composites reinforced with glassy carbon, Materials 2021, 14, 4024, DOI: 10.3390/ma14144024.
  • [27] Szeluga U., Pusz S., Kumanek B., Olszowska K., Czajkowska S., Myalski J., Kubacki J., Trzebicka B., Borowski A.F., Influence of unique structure of glassy carbon on morphology and properties of its epoxy-based binary composites and hybrid composites with carbon nanotubes, Composites Science and Technology 2016, DOI: 10.1016/j.compscitech.2016.08.004.
  • [28] Levêque J.M., Duclaux L., Rouzaud J.N., Reinert L., Komatsu N., Desforges A., Afreen S., Sivakumar M., Kimura T. Ultrasonic treatment of glassy carbon for nanoparticle preparation, Ultrasonics Sonochemistry 2016, DOI: 10.1016/j.ultsonch.2016.02.004.
  • [29] Kozioł M., Experimental study on the effect of stitch arrangement on mechanical performance of GFRP laminates manufactured on a basis of stitched preforms, Journal of Composite Materials 2012, 46, 9, 1067-1078, DOI: 10.1177/0021998311414947.
  • [30] Kozioł M., Effect of thread tension on mechanical performance of stitched glass fibre-reinforced polymer laminates – experimental study, Journal of Composite Materials 2013, 47, 16, 1919-1930, DOI: 10.1177/0021998312452179.
  • [31] Alajmi M., Alrashdan K.R., Alsaeed T., Shalwan A., Tribological characteristics of graphite epoxy composites using adhesive wear experiments, J. Mater. Res. Technol. 2020, 9(6), 13671-13681, DOI: 10.1016/j.jmrt.2020.09.106.
  • [32] Baptista R., Mendão A., Guedes M., Marat-Mendes R., An experimental study on mechanical properties of epoxy-matrix composites containing graphite filler, Procedia Structural Integrity 2016, 1, 074-081, DOI: 10.1016/j.prostr.2016.02.011.
  • [33] Smoleń J., Godzierz M., Olesik P., Pawlik T., Kozioł M., Utilization of CFRP waste as a filler in polyester resin-based composites, Journal of Composite Materials 2021, DOI: 10.1177/0021998321999098.
  • [34] Montazeri A., Chitsazzadeh M., Effect of sonication parameters on the mechanical properties of multi-walled carbon nanotube/epoxy composites, Materials and Design 2014, 56, 500-508, DOI: 10.1016/j.matdes.2013.11.013.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4e04afb7-1dc7-46a0-b59c-12c8d9903e91
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.