Czasopismo
2022
|
Vol. 55, nr 1
|
387--403
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
It is a well-known fact that inclusion and pseudo-order relations are two different concepts which are defined on the interval spaces, and we can define different types of convexities with the help of both relations. By means of pseudo-order relation, the present article deals with the new notions of convex functions which are known as left and right log- s -convex interval-valued functions (IVFs) in the second sense. The main motivation of this study is to present new inequalities for left and right log- s -convex-IVFs. Therefore, we establish some new Jensen-type, Hermite-Hadamard (HH)-type, and Hermite-Hadamard-Fejér (HH-Fejér)-type inequalities for this kind of IVF, which generalize some known results. To strengthen our main results, we provide nontrivial examples of left and right log- s -convex IVFs.
Czasopismo
Rocznik
Tom
Strony
387--403
Opis fizyczny
Bibliogr. 50 poz.
Twórcy
autor
- Department of Mathematics, COMSATS University Islamabad, Islamabad 44000, Pakistan, bilal42742@gmail.com
autor
- Department of Mathematics, COMSATS University Islamabad, Islamabad 44000, Pakistan, aslamnoor@comsats.edu.pk
autor
- Departamento de Matemáticas y Física, Universidad Autónoma de Aguascalientes, Avenida Universidad 940, Ciudad Universitaria, Aguascalientes 20131, Mexico , jemacias@correo.uaa.mx
- Department of Mathematics, School of Digital Technologies, Tallinn University, Narva Rd. 25, 10120 Tallinn, Estonia
autor
- Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia , soliman@tu.edu.sa
- Department of Electrical Engineering, Faculty of Energy Engineering, Aswan University, Aswan 81528, Egypt
autor
- Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia, h.zaini@tu.edu.sa
Bibliografia
- [1] M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl. 80 (1980), 545–550.
- [2] J. Hadamard, Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann, J. Math. Pures Appl. 5 (1893), 171–215.
- [3] C. Hermite, Sur deux limites d’une intégrale définie, Mathesis 3 (1883), 1–82.
- [4] M. Alomari, M. Darus, S. S. Dragomir, and P. Cerone, Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett. 23 (2010), 1071–1076.
- [5] G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl. 335 (2007), 1294–1308.
- [6] M. Avci, H. Kavurmaci, and M. E. Ozdemir, New inequalities of Hermite–Hadamard type via s-convex functions in the second sense with applications, Appl. Math. Comput. 217 (2011), 5171–5176.
- [7] M. U. Awan, M. A. Noor, and K. I. Noor, Hermite–Hadamard inequalities for exponentially convex functions, Appl. Math. Inf. Sci. 12 (2018), 405–409.
- [8] P. Cerone and S. S. Dragomir, Ostrowski type inequalities for functions whose derivatives satisfy certain convexity assumptions, Demonstr. Math. 37 (2004), 299–308.
- [9] F. Chen and S. Wu, Integral inequalities of Hermite–Hadamard type for products of two h-convex functions, Abstr. Appl. Anal. 6 (2014), 1–6.
- [10] Z. B. Fang and R. Shi, On the (p, h)-convex function and some integral inequalities, J. Inequal. Appl. 1 (2014), no. 45, 1–16.
- [11] H. Hudzik and L. Maligranda, Some remarks on s-convex functions, Aequationes Math. 48 (1994), 100–111.
- [12] I. Iscan, Hermite–Hadamard type inequalities for harmonically convex functions, Hacettepe J. Math. Stat. 43 (2014), 935–942.
- [13] I. Iscan, Hermite–Hadamard type inequalities for p-convex functions, Int. J. Anal. Appl. 11 (2016), 137–145.
- [14] M. A. Noor, F. Qi, and M. U. Awan, Some Hermite-Hadamard type inequalities for log-h-convex functions, Anal. 33 (2013), no. 4, 367–375.
- [15] B. Y. Xi and F. Qi, Some integral inequalities of Hermite-Hadamard type for s-logarithmically convex functions, Acta Math. Sci. Ser. A (Chin. Ed.) 35 (2015), no. 3, 515–524.
- [16] S. Varošanec, On h-convexity, J. Math. Anal. Appl. 326 (2007), no. 1, 303–311.
- [17] M. A. Noor, Hermite-Hadamard integral inequalities for log-preinvex functions, J. Math. Anal. Approx. Theory. 2 (2007), no. 2, 126–131.
- [18] J. E. Pecaric, F. Proschan, and Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Academic Press, 1991.
- [19] M. Adil Khan, J. Pecaric, and Y.-M. Chu, Refinements of Jensen’s and McShane’s inequalities with applications, AIMS Math. 5 (2020), no. 5, 4931–4945.
- [20] S. S. Dragomir, Refinements of the Hermite-Hadamard integral inequality for log-convex functions, Austral. Math. Sco. Gaz. 28 (2001), no. 3, 129–134.
- [21] S. S. Dragomir, A survey of Jensen type inequalities for log-convex functions of self adjoint operators in Hilbert spaces, Commun. Math. Anal. 10 (2011), no. 1, 82–104.
- [22] S. S. Dragomir and B. Mond, Integral inequalities of Hadamard type for log convex functions, Demonstr. Math. 31 (1998), no. 2, 354–364.
- [23] S. S. Dragomir, New inequalities of Hermite-Hadamard type for log convex functions, Khayyam J. Math. 3 (2017), no. 2, 98–115.
- [24] S. Khan, M. Adil Khan, and Y.-M. Chu, Converses of the Jensen inequality derived from the Green functions with applications in information theory, Math. Methods Appl. Sci. 43 (2020), no. 5, 2577–2587.
- [25] C. P. Niculescu, The Hermite-Hadamard inequality for log convex functions, Nonlinear. Anal. 75 (2012), no. 2, 662–669.
- [26] R. E. Moore, Interval Analysis, Prentice Hall, Englewood Cliffs, 1966.
- [27] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval Analysis, SIAM, Philadelphia, 2009.
- [28] E. J. Rothwell and M. J. Cloud, Automatic error analysis using intervals, IEEE Trans. Ed. 55 (2012), 9–15.
- [29] J. M. Snyder, Interval analysis for computer graphics, SIGGRAPH Comput. Graph. 26 (1992), 121–130.
- [30] E. de Weerdt, Q. P. Chu, and J. A. Mulder, Neural network output optimization using interval analysis, IEEE Trans. Neural Netw. 20 (2009), 638–653.
- [31] L. A. Zadeh, Fuzzy sets, Inf. Control. 8 (1965), no. 3, 338–353.
- [32] T. M. Costa, Jensen’s inequality type integral for fuzzy-interval-valued functions, Fuzzy Sets Syst. 327 (2017), 31–47.
- [33] T. M. Costa and H. Roman-Flores, Some integral inequalities for fuzzy-interval-valued functions, Inf. Sci. 420 (2017), 110–125.
- [34] A. Flores-Franulic, Y. Chalco-Cano, and H. Roman-Flores, An Ostrowski type inequality for interval-valued functions, in: IFSA World Congress and NAFIPS Annual Meeting IEEE 35 (2013), pp. 1459–1462.
- [35] H. Roman-Flores, Y. Chalco-Cano, and W. A. Lodwick, Some integral inequalities for interval-valued functions, Comput. Appl. Math. 35 (2016), 1–13.
- [36] H. Roman-Flores, Y. Chalco-Cano, and G. N. Silva, A note on Gronwall type inequality for interval-valued functions, in: IFSA World Congress and NAFIPS Annual Meeting IEEE 35 (2013), 1455–1458.
- [37] Y. Chalco-Cano, A. Flores-Franulic, and H. Román-Flores, Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative, Comput. Appl. Math. 31 (2012), 457–472.
- [38] Y. Chalco-Cano, W. A. Lodwick, and W. Condori-Equice, Ostrowski type inequalities and applications in numerical integration for interval-valued functions, Soft Comput. 19 (2015), 3293–3300.
- [39] K. Nikodem, J. L. Sanchez, and L. Sanchez, Jensen and Hermite–Hadamard inequalities for strongly convex set-valued maps, Math. Aeterna 4 (2014), no. 8, 979–987.
- [40] D. Zhang, C. Guo, D. Chen, and G. Wang, Jensen’s inequalities for set-valued and fuzzy set-valued functions, Fuzzy Sets Syst. 2020 (2020), 1–27.
- [41] D. F. Zhao, T. Q. An, G. J. Ye, and W. Liu, New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions, J. Inequal. Appl. 3 (2018), 1–14.
- [42] Y. Guo, G. Ye, D. Zhao, and W. Liu, Some integral inequalities for Log-h-Convex interval-valued functions, IEEE Access 7 (2019), 86739–86745.
- [43] M. B. Khan, P. O. Mohammed, M. A. Noor, and Y. S. Hamed, New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus and related inequalities, Symmetry 13 (2021), 673.
- [44] G. Sana, M. B. Khan, M. A. Noor, P. O. Mohammed, and Y. M. Chu, Harmonically convex fuzzy-interval-valued functions and fuzzy-interval Riemann–Liouville fractional integral inequalities, Int. J. Comput. Intell. Syst. 14 (2021), 1809–1822.
- [45] M. B. Khan, M. A. Noor, K. I. Noor, and Y. M. Chu, New Hermite-Hadamard type inequalities for (h1, h2)-convex fuzzy-interval-valued functions, Adv. Differ. Equations 2021 (2021), 6–20.
- [46] M. B. Khan, M. A. Noor, L. Abdullah, and Y. M. Chu, Some new classes of preinvex fuzzy-interval-valued functions and inequalities, Int. J. Comput. Intell. Syst. 14 (2021), 1403–1418.
- [47] M. B. Khan, M. A. Noor, M. M. Al-Shomrani, and L. Abdullah, Some novel inequalities for LR-h-convex interval-valued functions by means of pseudo order relation, Math. Meth. Appl. Sci. 45 (2022), no. 3, 1310–1340.
- [48] M. B. Khan, H. G. Zaini, S. Treanțǎ, M. S. Soliman, and K. Nonlaopon, Riemann–Liouville fractional integral inequalities for generalized pre-invex functions of interval-valued settings based upon pseudo order relation, Mathematics 10 (2022), 204.
- [49] M. B. Khan, S. Treanțǎ, M. S. Soliman, K. Nonlaopon, and H. G. Zaini, Some Hadamard-Fejér type inequalities for LR-convex interval-valued functions, Fractal Fract. 6 (2022), 6.
- [50] M. B. Khan, H. G. Zaini, S. Treanțǎ, G. Santos-García, J. E. Macías-Díaz, and M. S. Soliman, Fractional calculus for convex functions in interval-valued settings and inequalities, Symmetry 14 (2022), 341.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4e00c160-efd9-4cc2-8cf8-ed52738cd2c0