Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2018 | Vol. 66, no. 6 | 1273--1290
Tytuł artykułu

Stress studies in the Central Alborz by inversion of earthquake focal mechanism data

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Alborz is one of the most important seismotectonic provinces in Iran. Furthermore, emplacement of Tehran as a mega city in southern part of the Alborz intensifies the seismic vulnerability in this area. In this study, the focal mechanism data from teleseismic and local seismic networks are used for stress tensor inversion. The earthquake focal mechanisms in the Central Alborz are divided into several groups with respect to their location. Two different stress tensor inversions, linear and nonlinear, are used for obtaining the principal stress orientations. The results show spatial variations in tectonic stress field, consistent with fault orientations and faulting mechanisms. The maximum compressional stress directions obtained in this study are confirmed by fast S-wave polarization axes reported by a previous shear wave splitting study. The maximum horizontal stress directions are also compared with GPS strain rates. The results indicate a partitioning of deformation in the area due to regional stresses along preexisting faults.
Wydawca

Czasopismo
Rocznik
Strony
1273--1290
Opis fizyczny
Bibliogr. 45 poz.
Twórcy
  • Seismology Department, International Institute of Earthquake Engineering and Seismology, Tehran, Iran, beyranvand@iiees.ac.ir
Bibliografia
  • 1. Abbassi A, Nasrabadi A, Tatar M, Yaminifard F, Abbassi M, Hatzfeld D, Priestley K (2010) Crustal velocity structure in the southern edge of the Central Alborz (Iran). J Geodyn 49(2):68–78. https://doi.org/10.1016/j.jog.2009.09.044
  • 2. Alavi M (1996) Tectonostratigraphic synthesis and structural style of the Alborz mountain system in northern Iran. J Geodyn 21(1):1–33
  • 3. Allen M, Ghassemi MR, Sharabi M, Qorashi M (2003) Accommodation of late Cenozoic oblique shortening in the Alborz range, Iran. J Struct Geol 25:659–672
  • 4. Ambraseys NN, Melville CP (1982) A history of Persian earthquakes. Cambridge earth science series. Cambridge University Press, London, p 212
  • 5. Berberian M (1983) The southern Caspian: a compressional depression floored by a trapped, modified oceanic crust. Can J Earth Sci 20(2):163–183
  • 6. Berberian M, King GCP (1981) Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18:210–265
  • 7. Berberian M, Walker R (2010) The Rudbar Mw 7.3 earthquake of 1990 June 20; seismotectonics, coseismic and geomorphic displacements, and historic earthquakes of the western ‘High-Alborz’, Iran. Geophys J Int 182:1577–1602. https://doi.org/10.1111/j.1365-246X.2010.04705.x
  • 8. Berberian M, Yeats RS (2001) Contribution of archaeological data to studies of earthquake history in the Iranian Plateau. J Struct Geol 23:563–584
  • 9. Djamour Y, Vernant P, Bayer R, Nankali HR, Ritz JF, Hinderer J, Hatam Y, Luck B, Moigne N, Sedighi M, Khorrami F (2010) GPS and gravity constraints on continental deformation in the Alborz mountain range, Iran. Geophys J Int 183:1287–1301
  • 10. Ekström G, Nettles M, Dziewonski AM (2012) The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Phys Earth Planet Inter 200–201:1–9. https://doi.org/10.1016/j.pepi.2012.04.002
  • 11. Engdahl ER, Van der Hilst R, Buland R (1998) Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull Seismol Soc Am 88:722–743
  • 12. Gephart JW, Forsyth DW (1984) An improved method for determining the regional stress tensor using earthquake focal mechanism data: application to the San Fernando earthquake sequence. J Geophys Res 89:9305–9320
  • 13. Gillard D, Wyss M (1995) Comparison of strain and stress tensor orientation: application to Iran and Southern California. J Geophys Res Solid Earth 100(B11):22197–22213
  • 14. Hardebeck J, Hauksson E (2001) Stress orientations obtained from earthquake focal mechanisms: what are appropriate uncertainty estimates? Bull Seismol Soc Am 91(2):250–262
  • 15. Hollingsworth J, Nazari H, Ritz JF, Salamati R, Talebian M, Bahroudi A, Walker R, Rizza M, Jackson J (2010) Active tectonics of the east Alborz mountains, NE Iran: Rupture of the left-lateral Astaneh fault system during the great 856 A.D. Qumis earthquake. J Geophys Res. https://doi.org/10.1029/2009jb007185
  • 16. Jackson J, Priestley K, Allen M, Berberian M (2002) Active tectonics of the South Caspian Basin. Geophys J Int 148:214–245
  • 17. Javidfakhr B, Bellier O, Shabanian E, Siame L, Léanni L, D Bourlès, Ahmadian S (2011) Fault kinematics and active tectonics at the southeastern boundary of the eastern Alborz (Abr and Khij fault zones): geodynamic implications for NNE Iran. J Geodyn 52:290–303
  • 18. Kagan YY (1991) 3-D rotation of double-couple earthquake sources. Geophys J Int 106:709–716
  • 19. Keiding M, Lund B, Arnadottir Th (2009) Earthquakes, stress, and strain along an obliquely divergent plate boundary: Reykjanes Peninsula, Southwest Iceland. J Geophys Res. https://doi.org/10.1029/2008jb006253
  • 20. Khorrami F, Hesami Kh, Nankali HR, Tavakoli F (2012) Geosciences. Geol Surv Iran 82:223–230
  • 21. Lund B, Böđvarsson R (2002) Correlation of microearthquake body-wave spectral amplitudes. Bull Seismol Soc Am 92(6):2419–2433
  • 22. Lund B, Slunga R (1999) Stress tensor inversion using detailed microearthquake information and stability constraints: application to Olfus in southwest Iceland. J Geophys Res 104(B7):14947–14964
  • 23. Lund B, Townend J (2007) Calculating horizontal stress orientations with full or partial knowledge of the tectonic stress tensor. Geophys J Int 170:1328–1335. https://doi.org/10.1111/j.1365-246X.2007.03468.x
  • 24. Masson F, Djamour Y, Van Gorp S, Chéry J, Tatar M, Tavakoli F, Nankali H, Vernant P (2006) Extension in NW Iran driven by the motion of the South Caspian Basin. Earth Planet Sci Lett 252(1–2):180–188. https://doi.org/10.1016/j.epsl.2006.09.038
  • 25. Michael AJ (1984) Determination of stress from slip data: faults and folds. J Geophys Res 89(B13):11517–11526
  • 26. Mirzayi Suzani M, Shahidi A, Ramezani Omali R, Alizadeh Suri F (2016) Geosciences. Geol Surv Iran 95:39–48
  • 27. Motavalli-Anbaran S, Zeyen H, Brunet M, Ardestani VE (2011) Crustal and lithospheric structure of the Alborz Mountains, Iran and surrounding areas from integrated geophysical modeling. Tectonics. https://doi.org/10.1029/2011tc002934
  • 28. Musumeci C, Patanè D, Scarfĭ L, Gresta S (2005) Stress directions and shear-wave anisotropy: observations from local earthquakes in Southeastern Sicily, Italy. Bull Seismol Soc Am 95(4):1359–1374. https://doi.org/10.1785/0120040108
  • 29. Naimi-Ghassabian N, Khatib M, Nazari H, Heyhat M (2015) Present-day tectonic regime and stress patterns from the formal inversion of focal mechanism data, in the North of Central–East Iran Blocks. J Afr Earth Sci 111:113–126. https://doi.org/10.1016/j.jafrearsci.2015.07.018
  • 30. Nemati M, Hatzfeld D, Gheitanchi MR, Sadidkhouy A, Mirzaei N (2011) Microseismicity and seismotectonics of the Firuzkuh and Astaneh faults (East Alborz, Iran). Tectonophysics 506(1–4):11–21. https://doi.org/10.1016/j.tecto.2011.04.007
  • 31. Nemati M, Hollingsworth J, Zhan Z, Bolourchi MJ, Talebian M (2013) Microseismicity and seismotectonics of the South Caspian Lowlands, NE Iran. Geophys J Int 193(3):1053–1070. https://doi.org/10.1093/gji/ggs114
  • 32. Radjaee A, Rham D, Mokhtari M, Tatar M, Priestley K, Hatzfeld D (2010) Variation of Moho depth in the central part of the Alborz. Geophys J Int 181:173–184. https://doi.org/10.1111/j.1365-246X.2010.04518.x
  • 33. Raeesi M, Zarifi Z, Nilfouroushan F, Boroujeni SA, Tiampo K (2016) Quantitative analysis of seismicity in Iran. Pure Appl Geophys 174(3):793–833. https://doi.org/10.1007/s00024-016-1435-4
  • 34. Ritz J-F, Nazari H, Ghassemi A, Salamati R, Shafei A, Solaymani S, Vernant P (2006) Active transtension inside central Alborz: a new insight into northern Iran-southern Caspian geodynamics. Geology 34(6):477–480
  • 35. Sadidkhouy A, Javan-Doloei G, Siahkoohi HR (2008) Seismic anisotropy in the crust and upper mantle of the Central Alborz Region, Iran. Tectonophysics 456(3–4):194–205
  • 36. Shabanian E, Bellier O, Abbassi MR, Siame L, Farbod Y (2010) Plio-Quaternary stress states in NE Iran: Kopeh Dagh and Allah Dagh-Binalud mountain ranges. Tectonophysics 480(1–4):280–304
  • 37. Snoke JA, Munsey JW, Teague AC, Bollinger GA (1984) A program for focal mechanism determination by combined use of polarity and SV -P amplitude ratio data, Earthquake Notes, 55, #3, 15
  • 38. Stocklin J (1974) Possible ancient continental margin in Iran. In: Burke C, Drake C (eds) Geology of continental margins. Springer, New York, pp 873–877
  • 39. Tatar M, Jackson J, Hatzfeld D, Bergman E (2007) The 28 May 2004 Baladeh earthquake (Mw 6.2) in the Alborz, Iran: implications for Tehran and the geology of the South Caspian Basin margin. Geophys J Int 170:249–261
  • 40. Tatar M, Hatzfeld D, Abbassi A, Yamini Fard F (2012) Microseismicity and seismotectonics around the Mosha fault (Central Alborz, Iran). Tectonophysics 544–545:50–59
  • 41. Vavryčuk V (2014) Iterative joint inversion for stress and fault orientations from focal mechanisms. Geophys J Int 199(1):69–77. https://doi.org/10.1093/gji/ggu224
  • 42. Vavrycuk V, Bouskova A (2008) S-wave splitting from records of local micro-earthquakes in West Bohemia/Vogtland: an indicator of complex crustal anisotropy. Stud Geophys Geod 52:631–650. https://doi.org/10.1007/s11200-008-0041-z
  • 43. Vernant Ph, Nilforoushan F, Che´ry J, Bayer Y, Djamour R, Massona F, Nankali H, Ritz JF, Sedighi M, Tavakoli F (2004) Deciphering oblique shortening of central Alborz in Iran using geodetic data, Earth planet. Sci Lett 223:177–185
  • 44. Zanchi A, Berra F, Mattei M, Ghassemi M, Sabouri J (2006) Inversion tectonics in central Alborz, Iran. J Struct Geol 28:2023–2037
  • 45. Zarifi Z, Nilfouroushan F, Raeesi M (2014) Crustal stress map of Iran: insight from seismic and geodetic computations. Pure Appl Geophys 171(7):1219–1236
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW
przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4d6add62-86b3-40ce-bdd3-20a1b2151319
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.