Warianty tytułu
Języki publikacji
Abstrakty
This work is a continuation of author's work [1] on fixed points. In this work, Brouwer's theorem is proved on the basis of the Hex theorem. In the proof, the author uses, among other things, the lemma about no draw. Two proofs of this lemma are derived. The second proof is a modification of D. Gale's proof [2] and is based on the concept of a walk on the Hex board.
Rocznik
Tom
Strony
33--44
Opis fizyczny
Bibliogr. 3 poz.
Twórcy
autor
- University of Warmia and Mazury, Faculty of Mathematics and Computer Science, Chair of Complex Analysis, Słoneczna 54 Street, 10-710 Olsztyn, Poland, ebarcz@matman.uwm.edu.pl
Bibliografia
- 1. Barcz E.:A new Proof and Consequences of the Fixed Point Theorem of Matkowski. Annales Mathematicae Silesianae 35, no. 2, 149-157, 2021.
- 2. Gale D.: The game of Hex and the Brouwer Fixed-Point Theorem. The American Mathematical Monthly, Vol. 86, No. 10, 818-827.
- 3. Szulc J.: Lemat Spernera, czyli co wspólnego mają trójkąty i sprawiedliwy podział Delta nr 3, 2020.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4d643aeb-e2af-419d-ae12-24d6c7376d9b