Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | Vol. 33 nr 3 | 135--144
Tytuł artykułu

The chemical mechanism of pollution formation in coal combustion process

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper undertakes the problems of combustion of coal in oxygen-modified atmospheres in the aspect of formation and reduction of gaseous pollutants. Using the CHEMKIN-PRO, a professional software application supplied by American company Reaction Design, the chemistry of hard coal combustion in a pilot 0.1 MW CFB boiler was modelled. The computation was performed for gaseous atmosphere chemical compositions, namely 21% O2 and 79% CO2. The chemical mechanism covered 152 chemical reactions and 46 chemical compounds and elements. The initial conditions were formulated based on data obtained from experimental tests carried out within the framework of the Strategic Project "Advances energy recovery technologies". The performed computer simulations have proved that the use of numerical methods for predicting the combustion products constitutes an inseparable and irreplaceable element of research.
Wydawca

Rocznik
Strony
135--144
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • Czestochowa University of Technology Faculty of Materials Processing Technology and Applied Physics, Armii Krajowej 19, 42 – 200 Czestochowa, Poland, zajemska@wip.pcz.pl
autor
  • Czestochowa University of Technology Faculty of Materials Processing Technology and Applied Physics, Armii Krajowej 19, 42 – 200 Czestochowa, Poland
Bibliografia
  • [1] Buhre B.J.P., Elliott L.K., Sheng C.D., Gupta R.P. & Wall T.F. Oxy-fuel combustion technology for coalfired power generation. Progress in Energy and Combustion Science. 2005, 31, 283–307
  • [2] Chen L., Yong S. Z. & Ghoniem A. F. Oxy-fuel combustion of pulverized coal: Characterization, fundamentals, stabilization and CFD modeling. Progress in Energy and Combustion Science. 2012, 38, 156-214
  • [3] Normann F., Andersson K., Leckner B. & Johnsson F. Emission control of nitrogen oxides in the oxy-fuel process. Progress in Energy and Combustion Science. 2009, 35, 385–397
  • [4] Czakiert T., Klajny M., Muskala W., Krawczyk G., Borecki P., Gandor M., Jankowska S.& Nowak W. Small Pilot-Scale Oxy-Fuel CFB Facility Operation Experience. Proceedings of the 10th China-Japan Symposium on Fluidization, Tokyo Japan. 2010, 148-153
  • [5] Krzywański J., Czakiert T., Muskała W. & Nowak W. Modelling of CO2, CO, SO2, O2 and NOx emissions from the oxy-fuel combustion in a circulating fluidized bed. Fuel Processing Technology. 2011, 92, 590–596
  • [6] Lasek J. Spalanie w tlenie a emisja tlenków azotu. Stan wiedzy i perspektywy badawcze. Energetyka. 2011, July, 423-433
  • [7] Sami M., Annamalai K. & Wooldridge M. Co-firing of coal and biomass fuel blends. Progress in Energy and Combustion Science. 2001, 27, 171–214
  • [8] Kordylewski W. Spalanie i paliwa. Wroclaw, 2001
  • [9] Hecht E. S., Shaddix C. R., Molina A. & Haynes B. S. Effect of CO2 gasification reaction on oxy-combustion of pulverized coal char. Proceedings of the Combustion Institute. 2011, 33, 1699–1706.
  • [10] Krzywanski J., Czakiert T., Muskala W., Sekret R. & Nowak W. Modeling of solid fuel combustion in oxygen-enriched atmosphere in circulating fluidized bed boiler. Part 2. Numerical simulations of heat transfer and gaseous pollutant emissions associated with coal combustion in O2/CO2 and O2/N2 atmospheres enriched with oxygen under circulating fluidized bed conditions. Fuel Processing Technology. 2010, 91, 364–368
  • [11] Toftegaard M. B., J Brix J., Jensen P. A., Glarborg P. & Jensen A. D. Oxy-fuel combustion of solid fuels, Progress in Energy and Combustion Science. 2010, 36, 581-625
  • [12] Toporov D., Bocian P., Heil P., Kellermann A., Stadler H., Tschunko S., Förster M. & Kneer R. Detailed investigation of a pulverized fuel swirl flame in CO2/O2 atmosphere. Combustion and Flame. 2008, 155, 605–618
  • [13] http://www.chem.leeds.ac.uk/Combustion/Combustion.html; 11.03.2012 r.
  • [14] Chelliah H.K. Application of semi-global heterogeneous mechanism to graphite oxidation in a stagnation point flow
  • [15] http://web.anl.gov/PCS/acsfuel/preprint%20archive/Files/38_4_CHICAGO_08-93_1351.pdf.
  • [16] Rodrigues C. P., Lansarin M. A., Secchi A. R., Mendes T. F. Simulation of pulverized coal fired boiler: reaction chamber. Engenharia Térmica. 2005, 4/1, 61-68
  • [17] Murphy J.J., Shaddix R.Ch. Combustion kinetics of coal chars in oxygen-enriched environments. Combustion and Flame. 2006, 144, 710–729
  • [18] Praca zbiorowa pod redakcją Otwinowski H. Laboratorium spalania paliw stałych. Wydawnictwo Politechniki Częstochowskiej, Częstochowa 2009
  • [19] Czakiert T., Muskala W., Jankowska S., Krawczyk G., Borecki P., Jesionowski L., Nowak W. Combustible Matter Conversion in an Oxy-fuel Circulating Fluidized-Bed (CFB) Environment. Energy&Fuels. 2012, 26, 5437-5445
  • [20] Słupek S. & Nocoń J. Technika cieplna: ćwiczenia obliczeniowe. The AGH Publishers, Cracow, 1996
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4d581685-49df-480d-91a0-34c21cc63c97
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.