Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 122, nr 1 | 13--21
Tytuł artykułu

Flammability and morphology of Agel leaf fibre- epoxy composite modified with carbon powder for fishing boat applications

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Fibre Reinforced Polymer Composites have been extensively developed to construct fishing vessels. This study reports on the successful development of the Agel Leaf Fibre (ALF)- Epoxy composite reinforced with carbon powder and fabricated using the Vacuum Infusion method. Design/methodology/approach: The composites were prepared by varying the carbon powder filler content at volumes of 0%, 10%, and 30%. The fire resistance of the composites was investigated using a burning test according to ASTM D-3014 standards. The morphology of the composites was observed through SEM analysis and analysed using ImageJ software. Findings: The research findings reveal that adding 30% carbon powder in the HCP composite reduced the burning rate by 42.624 mm/sec and the time to ignition by 17.33 seconds, indicating improved fire resistance properties. The carbon powder inhibited flame propagation and reduced the combustion rate by 0.49%. The SEM examination confirmed that the fibre porosity decreased, resulting in a denser composite with enhanced fibre-matrix adhesion. Therefore, the implementation of fire-resistant composite materials in fishing vessel construction can be realised. Research limitations/implications: The present study primarily examined the immediate effects of carbon powder additions on the morphology of the composites. However, it is crucial to consider these composites’ long-term stability and durability. Future research should investigate the ageing behaviour, considering environmental factors such as humidity, temperature, and UV radiation, to assess their impact on the morphology and flammability resistance of the composites. Additionally, it is essential to acknowledge that other factors, including fibre orientation, fibre length, and matrix properties, can significantly influence the overall performance of the composites. Practical implications: The enhanced flammability resistance of Agel Leaf Fibre-Epoxy composites with carbon powder additions holds significant benefits for fishing boat applications. In marine environments, the risk of fire incidents on fishing boats is high, making materials with good fire resistance highly desirable. Therefore, implementing fire-resistant composite materials in fishing boat construction can be realised to reduce the risk of fire incidents in high-seas fishing vessels. Originality/value: Composites with added carbon powder exhibited smaller flames, slower burning rates, and a lack of significant flame propagation. This suggests that adding carbon powder acts as an oxygen barrier and reduces the availability of fuel within the composite.
Wydawca

Rocznik
Strony
13--21
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
  • Semarang Maritime Polytechnic, Jl. Singosari Raya No.2A, Wonodri, Semarang, Jawa Tengah, 50242, Indonesia, pritha@pip-semarang.ac.id
  • Indonesian Railway Polytechnic, Tirta Raya street, Nambangan Lor, Manguharjo, Madiun, Jawa Timur, 63161, Indonesia, willy@pengajar.ppi.ac.id
autor
  • Semarang Maritime Polytechnic, Jl. Singosari Raya No.2A, Wonodri, Semarang, Jawa Tengah, 50242, Indonesia
  • Indonesian Railway Polytechnic, Tirta Raya street, Nambangan Lor, Manguharjo, Madiun, Jawa Timur, 63161, Indonesia
autor
  • Indonesian Railway Polytechnic, Tirta Raya street, Nambangan Lor, Manguharjo, Madiun, Jawa Timur, 63161, Indonesia
  • Indonesian Railway Polytechnic, Tirta Raya street, Nambangan Lor, Manguharjo, Madiun, Jawa Timur, 63161, Indonesia
autor
  • Indonesian Railway Polytechnic, Tirta Raya street, Nambangan Lor, Manguharjo, Madiun, Jawa Timur, 63161, Indonesia
Bibliografia
  • 1. C. Amin, H. Mulyati, E. Anggraini, T. Kusumastanto, Impact of maritime logistics on archipelagic economic development in eastern Indonesia, The Asian Journal of Shipping and Logistics 37/2 (2021) 157-164. DOI: https://doi.org/10.1016/j.ajsl.2021.01.004
  • 2. H. Zhao, N. Yu, S. Zhu, International land-sea trade corridor for sustainable transportation: A review of recent literature, Cleaner Logistics and Supply Chain 6 (2023) 100089. DOI: https://doi.org/10.1016/j.clscn.2022.100089
  • 3. K. Tikupadang, M.B. Palungan, A. Buku, H. Manuhutu, The Utilization of Agave Cantula Roxb as Composite Strength on Fishing Boat Hull, IOP Conference Series: Materials Science and Engineering 1088/1 (2021) 012101. DOI: https://doi.org/10.1088/1757-899x/1088/1/012101
  • 4. W. Liu, Y.K. Demirel, E.B. Djatmiko, S. Nugroho, T. Tezdogan, R.E. Kurt, H. Supomo, I. Baihaqi, Z. Yuan, A. Incecik, Bilge keel design for the traditional fishing boats of Indonesia’s East Java, International Journal of Naval Architecture and Ocean Engineering 11/1 (2019) 380-395. DOI: https://doi.org/10.1016/j.ijnaoe.2018.07.004
  • 5. F. Rubino, A. Nisticò, F. Tucci, P. Carlone, Marine application of fiber reinforced composites: A review, Journal of Marine Science and Engineering 8/1 (2020) 26. DOI: https://doi.org/10.3390/JMSE8010026
  • 6. M.Z. Shamsuddin, A Conceptual Design of a Fibre Reinforced Plastic Fishing Boat for Traditional Fisheries in Malaysia, Fisheries Industry Development Division Fisheries Development Authority of Malaysia (LKIM), Kuala Lumpur, Malaysia, 2003, 1-53.
  • 7. 5 Kapal Nelayan Pekalongan Terbakar: Okezone News (in Indonesian). Available from: https://news.okezone.com/read/2018/09/17/512/1951803/5-kapal-nelayan-pekalongan-terbakar (access in: 19.07.2023)
  • 8. W.A. Wirawan, S.A. Setyabudi, T.D. Widodo, M.A. Choiron, Surface Modification with Silane Coupling Agent on Tensile Properties of Natural Fiber Composite. Journal of Energy, Mechanical, Material, and Manufacturing Engineering 2/2 (2017) 98-105. DOI: https://doi.org/10.22219/jemmme.v2i2.5053
  • 9. W. Wirawan, T. Widodo, A. Zulkarnain, Analysis of the Addition of Coupling Agent on the Tensile Properties of Waru (Hibiscus Tiliaceus)-Polyester Leather Biocomposite, Jurnal Rekayasa Mesin 9/1 (2018) 35-41 (in Indonesian). DOI: https://doi.org/10.21776/ub.jrm.2018.009.01.6
  • 10. W.A. Wirawan, A. Sabitah, M.A. Choiron, M. Muslimin, A. Zulkarnain, B.W. Budiarto, Effect of chemical treatment on the physical and thermal stabillity of Hibiscus Tiliaceus Bark Fiber (HBF) as reinforcement in composite, Results in Engineering 18 (2023) 101101. DOI: https://doi.org/10.1016/j.rineng.2023.101101
  • 11. W.A. Wirawan, S.A.S. Budi, T.D. Widodo, Influence of Matrix Type on Tensile Properties of Natural Fiber Composite, Prosiding SNTT 2017 – Politeknik Negeri Malang 3 (2017) 29-34 (in Indonesian).
  • 12. W.A. Wirawan, M.A. Choiron, E. Siswanto, T.D. Widodo, Analysis of the fracture area of tensile test for natural woven fiber composites (hibiscus tiliaceus-polyester), Journal of Physics: Conference Series 1700/1 (2020) 012034. DOI: https://doi.org/10.1088/1742-6596/1700/1/012034
  • 13. W.A. Wirawan, M.A. Choiron, E. Siswanto, T.D. Widodo, Morphology. Structure. and Mechanical Properties of New Natural Cellulose Fiber Reinforcement from Waru (Hibiscus Tiliaceus) Bark, Journal of Natural Fibers 19/15 (2022) 12385-12397. DOI: https://doi.org/10.1080/15440478.2022.2060402
  • 14. M.N.M. Azlin, S.M. Sapuan, M.Y.M. Zuhri, E.S. Zainudin, R.A. Ilyas, Thermal Stability. Dynamic Mechanical Analysis and Flammability Properties of Woven Kenaf/Polyester-Reinforced Polylactic Acid Hybrid Laminated Composites, Polymers 14/13 (2022) 2690. DOI: https://doi.org/10.3390/polym14132690
  • 15. Y. Yin, J. Yin, W. Zhang, H. Tian, Z. Hu, M. Ruan, Z. Song, L. Liu, Effect of char structure evolution during pyrolysis on combustion characteristics and kinetics of waste biomass, Journal of Energy Resources Technology 140/7 (2018) 072203. DOI: https://doi.org/10.1115/1.4039445
  • 16. K. Babu, G. Rendén, R.A. Mensah, N.K. Kim, L. Jiang, Q. Xu, Á. Restás, R.E. Neisiany, M.S. Hedenqvist, M. Försth, A. Byström, O. Das, A review on the flammability properties of carbon-based polymeric composites: State-of-the-art and future trends, Polymers 12/7 (2020) 1518. DOI: https://doi.org/10.3390/polym12071518
  • 17. A. Taj, R.P. Swamy, K. Naik, K.N. Bharath, Effect of Nano-Filler Aluminum Oxide and Graphene on Flammability Properties of Kenaf Epoxy Composites, Journal of The Institution of Engineers (India): Series D 104/1 (2023) 143-154. DOI: https://doi.org/10.1007/s40033-022-00390-6
  • 18. X. Wen, Y. Wang, J. Gong, J. Liu, N. Tian, Y. Wang, Z. Jiang, J. Qiu, T. Tang, Thermal and flammability properties of polypropylene/carbon black nano¬composites, Polymer Degradation and Stability 97/5 (2012) 793-801. DOI: https://doi.org/10.1016/J.POLYMDEGRADSTAB.2012.01.031
  • 19. L. Wan, C. Deng, Z.-Y. Zhao, H. Chen, Y.-Z. Wang, Flame retardation of natural rubber: strategy and recent progress, Polymers 12/2 (2020) 429. DOI: https://doi.org/10.3390/polym12020429
  • 20. S. Karunakaran, D.L. Majid, M.L. Mohd Tawil, Flammability of self-extinguishing kenaf/ABS nanoclays composite for aircraft secondary structure, IOP Conference Series: Materials Science and Engineering 152/1 (2016) 012068. DOI: https://doi.org/10.1088/1757-899X/152/1/012068
  • 21. M.A.M. Nor, S.M. Sapuan, M.Z.M. Yusoff, E.S. Zainudin, Mechanical. Thermal and Morphological Properties of Woven Kenaf Fiber Reinforced Polylactic Acid (PLA) Composites, Fibers and Polymers 23/10 (2022) 2875-2884. DOI: https://doi.org/10.1007/s12221-022-4370-2
  • 22. G.M. Kanaginahal, V. Tambrallimath, M. Murthy, R.S. Mahale, A. Patil, S.Y. Pawar, P.P. Kakkamari, Flammability Studies of Natural Fiber-Reinforced Polymer Composites fabricated by Additive Manufacturing Technology: A Review, Journal of The Institution of Engineers (India): Series D (2023). DOI: https://doi.org/10.1007/S40033-023-00509-3
  • 23. J.M. Tonetto, A.P. Romio, J. Kloss, M. Di Domenico, C.Z. Brusamarello, Basalt powder as reinforcement material in polyurethane foams with reduced flammability and self-extinguish properties, Materials Letters: X 17 (2023) 100173. DOI: https://doi.org/10.1016/j.mlblux.2022.100173
  • 24. L. Taghi-Akbari, M.R. Naimi-Jamal, S. Ahmadi, Flammability. smoke production. and mechanical properties of thermoplastic polyurethane composites with an intumescent flame-retardant system and nano-silica, Iranian Polymer Journal 32 (2023) 1165-1178. DOI: https://doi.org/10.1007/S13726-023-01188-3
  • 25. S.M. Izwan, S.M. Sapuan, M.Y.M. Zuhri, A.R. Mohamed, Thermal stability and dynamic mechanical analysis of benzoylation treated sugar palm/kenaf fiber reinforced polypropylene hybrid composites, Polymers 13/17 (2021) 2961. DOI: https://doi.org/10.3390/polym13172961
  • 26. O. Das, A.J. Capezza, J. Mårtensson, Y. Dong, R.E. Neisiany, L. Pelcastre, L. Jiang, Q. Xu, R.T. Olsson, M.S. Hedenqvist, The effect of carbon black on the properties of plasticised wheat gluten biopolymer, Molecules 25/10 (2020) 2279. DOI: https://doi.org/10.3390/molecules25102279
  • 27. O. Das, N.K. Kim, A.K. Sarmah, D. Bhattacharyya, Development of waste based biochar/wool hybrid biocomposites: Flammability characteristics and mechanical properties, Journal of Cleaner Production 144 (2017) 79-89. DOI: https://doi.org/10.1016/J.JCLEPRO.2016.12.155
  • 28. M.J. Suriani, H.A. Zainudin, R.A. Ilyas, M. Petr, C.M. Ruzaidi, R. Mustapha, Kenaf Fiber/Pet Yarn Reinforced Epoxy Hybrid Polymer Composites: Morphological. Tensile. and Flammability Properties, Polymers 13/9 (2021) 1532. DOI: https://doi.org/10.3390/polym13091532
  • 29. L. Zárybnická, J. Machotová, M. Pagáč, J. Rychlý, A. Vykydalová, The effect of filling density on flammability and mechanical properties of 3D-printed carbon fiber-reinforced nylon, Polymer Testing 120 (2023) 107944. DOI: https://doi.org/10.1016/j.polymertesting.2023.107944
  • 30. J.X. Chan, J.F. Wong, A. Hassan, N. Othman, J.A. Razak, U. Nirmal, S. Hashim, Y.C. Ching, M.Z. Yunos, R. Yahaya, T.M. Sampath U. Gunathilake, Mechanical. thermal. tribological. and flammability properties of polybutylene terephthalate composites: Comparing the effects of synthetic wollastonite nanofibers. natural wollastonite. and graphene oxide, Journal of Applied Polymer Science 140/6 (2023) e53463. DOI: https://doi.org/10.1002/APP.53463
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4d3655c3-fed4-4d33-ae36-f64f96def816
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.