Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2021 | Vol. 69, no. 6 | 2261--2274
Tytuł artykułu

Multichannel seismic impedance inversion driven by logging–seismic data

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The prior information constrained impedance inversion is an important tool to improve the inversion effect. With the traditional constrained prior information extracted from logging data by the analytic formula, it is difficult to accurately describe the information of a complex reservoir. In addition, the traditional inversion method is trace-by-trace, which ignores the lateral information contained in seismic data. This paper presents a multichannel seismic impedance inversion method combining logging and seismic. In this method, the dictionary learning method is used to extract the vertical prior information of the formation from the logging data. At the same time, we can learn the dip information from seismic data cube. Under the framework of multichannel inversion, regularization and sparse representation technology are used to simultaneously add the vertical and the transverse distribution prior information into the inversion process. Block coordinate descent method is used to solve the multichannel inversion problem, making the seismic inversion efficient. This method excavates the spatial prior information in a data-driven way and is used for constrained inversion, avoiding the false prior cognition caused by manual interpretation. Through the model and field data testing, it is verified that this method is effective.
Wydawca

Czasopismo
Rocznik
Strony
2261--2274
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
autor
  • School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, China, yaojun.wang@uestc.edu.cn
autor
  • School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, China, 2045886877@qq.com
autor
Bibliografia
  • 1. Aharon M, Elad M, Bruckstein A (2006) K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 54(11):4311–4322
  • 2. Asnaashari A, Brossier R, Garambois S, Audebert F, Thore P, Virieux J (2013) Regularized seismic full waveform inversion with prior model information. Geophysics 78(2):R25–R36
  • 3. Fomel S (2002) Applications of plane-wave destruction filters. Geophysics 67(6):1946–1960
  • 4. Fridman V (1965) A method of successive approximations for Fredholm integral equations of the first kind. Uspeki Mat Nauk 11:233–234
  • 5. Gotsman C, Surazhsky V (2001) Guaranteed intersection-free polygon morphing. Comput Graph 25(1):67–75. https://doi.org/10.1016/S0097-8493(00)00108-4
  • 6. Hansen PC (1990) Truncated singular value decomposition solutions to discrete ill-posed problems with ill-determined numerical rank. SIAM J Sci Stat Comput 11(3):503–518
  • 7. Landweber L (1951) An iteration formula for Fredholm integral equations of the first kind. Am J Math 73(3):615–624
  • 8. Ma M, Wang S, Yuan S, Wang J, Wen J (2017) Multichannel spatially correlated reflectivity inversion using block sparse Bayesian learning. Geophysics 82(4):V191–V199
  • 9. Ma M, Wang S, Yuan S, Gao J, Li S (2018) Multichannel block sparse Bayesian learning reflectivity inversion with lp-norm criterion-based Q estimation. J Appl Geophys 159:434–445
  • 10. Ma M, Zhang R, Yuan S (2019) Multichannel impedance inversion for nonstationary seismic data based on the modified alternating direction method of multipliers. Geophysics 84(1):A1–A6
  • 11. Robinson EA (1985) Seismic time-invariant convolutional model. Geophysics 50(12):2742–2751
  • 12. Roy P, Zhu X, Fei W (2020) Machine learning assisted seismic inversion. SEG technical program expanded abstracts, pp 1705–1709
  • 13. She B, Li K, Liu Z, Wang Y, Cai H, Liu W, Hu G (2018) Seismic impedance inversion using dictionary learning and sparse representation. SEG Technical Program Expanded Abstracts 2018:396–400
  • 14. She B, Wang Y, Liu Z, Cai H, Liu W, Hu G (2019) Seismic impedance inversion using dictionary learning-based sparse representation and nonlocal similarity. Interpretation 7(3):SE51–SE67
  • 15. Wang Y, Lin W, Cheng S, She B, Hu G, Liu W (2018) Sharp and laterally constrained multitrace impedance inversion based on blocky coordinate descent. Acta Geophys 66(4):623–631
  • 16. Wang Y, Liu Y, She B, Hu G, Jin S (2021) Data-driven pre-stack AVO inversion method based on fast orthogonal dictionary. J Pet Sci Eng 201:108362
  • 17. Yuan S, Wang S, Luo C, He Y (2015) Simultaneous multitrace impedance inversion with transform-domain sparsity promotion. Geophysics 80(2):R71–R80
  • 18. Yuan S, Wang S, Tian N, Wang Z (2016) Stable inversion-based multitrace deabsorption method for spatial continuity preservation and weak signal compensation. Geophysics 81(3):V199–V212
  • 19. Zhdanov MS (2002) Geophysical inverse theory and regularization problems, vol 36, Elsevier
  • 20. Zhou D, Yin X, Zong Z (2019) Multi-trace basis-pursuit seismic inversion for resolution enhancement. Geophys Prospect 67(3):519–531
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4d328b96-54c9-4add-a947-c5f9348191b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.