Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 67, No. 4 | art. no. 48
Tytuł artykułu

Unraveling Mediaeval human traces in fluvial deposits of the Dyje River near the Pohansko stronghold (Czech Republic)

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sedimentological, archaeological, geochemical and pollen analyses combined with numerical dating were employed to examine the fluvial deposits of the Dyje River within the immediate vicinity of the Pohansko stronghold (Moravia, Czech Republic). This comprehensive approach facilitated the reconstruction of the chronology and nature of the processes in both the Dyje River catchment and its floodplain, mostly during the Medieval period. The older overbank deposits accumulated during the Late Holocene sometime before the 9th century CE. Palaeochannel sands were deposited between the 9th and 11th centuries CE as the infill of one fluvial channel of the Dyje River. The lower part of these sands displays direct traces of human intervention, including stones interpreted as from pavements and a wooden construction dated between 894 and 914 CE. The wooden construction may represent the remains of a bridge, a device for fish capture or a wooden structure. Geochemical signals associated with human activities are elevated in the palaeochannel sands, in part contemporary with the settlement activities at the Pohansko stronghold. Anthropogenic pollen indicators indicate the highest intensity of agriculture in the river catchment also in this period. After abandonment of the channel, the younger upper overbank deposits accumulated after the 11th century CE.
Wydawca

Rocznik
Strony
art. no. 48
Opis fizyczny
Bibliogr. 91 poz., fot., rys., tab., wykr.
Twórcy
  • Masaryk University, Faculty of Science, Department of Geological Sciences, Kotlářská 2, CZ- 611 37 Brno,Czech Republic
  • Masaryk University, Faculty of Science, Department of Geological Sciences, Kotlářská 2, CZ- 611 37 Brno,Czech Republic
  • Masaryk University, Faculty of Science, Department of Geological Sciences, Kotlářská 2, CZ- 611 37 Brno,Czech Republic
  • Masaryk University, Faculty of Arts, Department of Archaeology, Czech Republic
  • Masaryk University, Faculty of Science, Department of Geological Sciences, Kotlářská 2, CZ- 611 37 Brno,Czech Republic
  • Masaryk University, Faculty of Arts, Department of Archaeology, Czech Republic
Bibliografia
  • 1. Adameková, K., Petřík, J., Dlapa, P., Prišťáková, M., Nehyba, S., Dresler, P., Hrabovský, A., 2022. Soil development on the floodplain of the river Thaya in the foreland of the Pohansko stronghold near Břeclav (in Czech). Geological Research in Moravia and Silesia, 29: 78-85. https://dor10.5817/GVMS2022-33071
  • 2. Allen, J.R.L., Leeder, M.R., 1980. Criteria for the instability of upper-stage plane beds. Sedimentology, 27: 209-217.
  • 3. Bábek, O., Hilscherová, K., Nehyba, S., Zeman, J., Famera, M., Franců, J., Holoubek, I., Machát, J., Klánová, J., 2008. Continuation history of suspended river sediments accumulated in oxbow lakes over the last 25 years. Journal of Soils and Sediments, 8: 165-176.
  • 4. Bábek, O., Sedláček, J., Novák, A., Létal, A., 2018. Eletrical resistivity imaging of anastomosing river subsurface stratigraphy and posible controls of fluvial style chage in a graben-like basin, Czech Republic. Geomorphology, 317: 139-156. https://doi.org/10.1016/j.geomorph.2018.05.012
  • 5. Best, J.L., 1996. The fluid dynamics of small-scale alluvial bedforms. In: Advances in Fluvial Dynamics and Stratigraphy (eds. P.A. Carling and M.R. Dawson): 67-125. Wiley, Chichester.
  • 6. Beug, H.J., 2004. Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Verlag Dr. Friedrich Pfeil, München.
  • 7. Bintliff, J., Degryse, P., 2022. A review of soil geochemistry in archaeology. Journal of Archaeological Science: Reports, 43: 103419. https://doi.org/10.1016/j.jasrep.2022.103419
  • 8. Brooks, G., 2003. Holocene lateral channel migration and incision of the Red River, Manitoba, Canada. Geomorphology, 54: 197-215. https://doi.org/10.1016/S0169-555X(02)00356-2
  • 9. Brown, A., Toms, P., Carey, C., Rhodes, E., 2013. Geomorphology of the Anthropocene: time-transgressive discontinuities of human-induced alluviation. Anthropocene, 1: 3-13. https://doi.org/10.1016/j.ancene.2013.06.002
  • 10. Brown, A.G., Lespez, L., Sear, D.A., Macaire, J.J., Houben, P., Klimek, K., Brazier, R.E., Van Oost, K., Pears, B., 2018. Natural vs anthropogenic streams in Europe: history, ecology and implications for restoration. Earth-Science Reviews, 180: 185-205. https://doi. org/10.1016/j.earscirev.2018.02.001
  • 11. Břízová, E., Havlíček, P., 2002. Some remarks to the polen analysis of Quaternary deposits from Mikulčice in southern Moravia (in Czech). Zprávy o Geologických Výzkumech v r 2001, 1: 124-126.
  • 12. Candel, J.H.J., Kleinhans, M.G., Makaske, B., Hoek, W.Z., Quik, C., Wallinga, J., 2018. Late Holocene channel pattern change from laterally stable to meandering caused by climate and land use changes. Earth Surface Dynamics, 6: 723-741. https://doi.org/10.5194/esurf-2018-31
  • 13. Colombera, L., Mountney, N.P., 2019. The lithofacies organization of fluvial channel depos its: a meta-analysis of modern rivers. Sedimentary Geology, 383: 16-40. https://doi.org/10.16/j.sedgeo.2019.01.011
  • 14. Constantine, J.A., Dunne, T., PiéGay, H., Mathias Kondolf, G., 2010. Controls on the alluviation of oxbow lakes by bed-material load along the Sacramento River, California. Sedimentology, 57: 389-407. https://doi.org/10.1111/j.1365-3091.2009.01084.x.
  • 15. Cook, E.R., Kairiukstis, L.A., 1990. Methods of Dendrochronology. Applications in the Environmental Sciences. International Institute for Applied Systems Analysis. Kluwer Academic Publishers, Dordrecht.
  • 16. Dépret, T., Riquier, J., Piégay, H., 2017. Evolution of abandoned channels: Insights on controlling factors in a multi-pressure river system. Geomorphology, 294: 99-118. https://doi.org/10.1016/j.geomorph.2017.01.036
  • 17. Doláková, N., Kováčová, M., 2007. Pannonian vegetation from the Northern part of Vienna basin. Sborník Národního muzea v Praze, 64: 163-171.
  • 18. Doláková, N., Roszková, A., Přichystal, A., 2010. Palynology and natural environment in the Pannonian to Holocene sediments of the Early Medieval centre Pohansko near Břeclav (Czech Republic). Journal of Archaeological Science, 37: 2538-2550. http://dx.doi.org/10.1016/j.jas.2010.05.014.
  • 19. Doláková, N., Kočár, P., Dresler, P., Dreslerová, G., Kočárová, R., Ivanov, M., Nehyba, S., 2020. Development of interaction of the environment and the subsistence stratégy of early medieval society: Pohansko near Břeclav and surroundings (in Czech). Archeologické rozhledy, 72: 523-572. https://doi.org/10.35686/AR.2020.19
  • 20. Dostál, B., 1968. K prehistorii a protohistorii Břeclavi (in Czech). In: Břeclav. Dějiny města (ed. M. Zemek): 9-44. Musejní spolek Brno, Břeclav.
  • 21. Dreibrodt, S., Lubos, C., Terhorst, B., Damm, B., Bork, H.-R., 2010. Historical soil erosion by water in Germany: scales and archives, chronology, research perspectives. QuaternaryInterna- tional, 222: 80-95. https://doi.org/10.1016/j.quaint.2009.06.014
  • 22. Dresler, P., 2016. Břeclav - Pohansko VIII (in Czech). Industrial supportive environment of centrum or only village in the proximity of centre? Masaryk Univerzity, Brno.
  • 23. Dresler, P., Beran, V., 2019. Agricultural tools of the Early Medieval Population of Pohansko near Břeclav (in Czech). Památky archeologické, 110: 237-306.
  • 24. Dresler, P., Dreslerová, G., Doláková, N., Kočár, P., Kočárová, R., 2022. Beaver as proof of the change of natural environment and economy of the first half of the 10th century AD. Archaeologia Austriaca, 106: 117-136. https://doi.org/10.1553/archaeologia106s117
  • 25. Dreslerová, G., Hajnalová, M., Macháček, J., 2013. Subsistenční strategie raně středovekých populací v dolním Podyjí. Archeozoologické a archeobotanické vyhodnocení nálezů z výzkumu Kostice - Zadní hrúd (2009-2011) (in Czech). Archeologické rozhledy, 65: 825-850.
  • 26. Durand, M., 2006. The problem of the transition from the Permian to the Triassic Series in southeastern France: comparison with other Peritethyan regions. Geological Society Special Publications, 265: 281-296. https://doi.org/10.1144/GSL.SP.2006.265.01.13
  • 27. Elznicová, J., Kiss, T., Sipos, G., Faměra, M., Štojdl, J., Váchová, V., Matys Grygar, T., 2021. A central European alluvial river under anthropogenic pressure: the Ohře River, Czechia. Catena, 201: 105218. https://doi.org/10.1016/i.catena.2021.105218
  • 28. Erdtman, G., 1960. The acetolysis method, a revised description. Svensk Botanisk Tidskrift, 54: 561-564.
  • 29. Erkens, G., Hoffmann, T., Gerlach, R., Klostermann, J., 2011. Complex fluvial response to Lateglacial and Holocene allogenic forcing in the Lower Rhine Valley (Germany). Quaternary Science Reviews, 30: 611-627. https://doi.org/10.1016/j.quascirev.2010.11.019
  • 30. Folk, R.L., Ward, W., 1957. Brazos River bar: a study in the significance of grain-size parameters. Journal of Sedimentary Petrology, 27: 3-26.
  • 31. Gautier, E., Brunstein, D., Vauchel, P., Roulet, M., Fuertes, O., Guyot, J.L., Darozzes, J., Bourrel, L., 2007. Temporal relations between meander deformation, water discharge and sediment fluxes in the floodplain of the Rio Beni (Bolivian Amazonia). Earth Surface Processes and Landforms, 32: 230-248. https://doi.org/10.1002/esp.1394
  • 32. Gibbard, P.L., Lewin, J., 2002. Climate and related controls on interglacial fluvial sedimentation in lowland Britain. Sedimentary Geology, 151: 187-210. https://doi.org/10.1016/S0037-0738(01)00253-6
  • 33. Grygar, T., Nováková, T., Mihaljevič, M., Strnad, L., Světlík, I., Koptíková, L., Lisá, L., Brázdil, R., Máčka, Z., Stachoń, Z., Svitavská-Svobodová, H., Wray, D.S., 2011. Surprisingly small increase of the sedimentation rate in the floodplain of Morava River in the Strážnice area, Czech Republic, in the last 1300 years. Catena, 86: 192-207. https://doi.org/10.1016/j.catena.2011.04.003
  • 34. Havlíček, P., 2001. Geology of the surroundings of the Great Moravian centre at Břeclav-Pohansko. Zprávy o geologických výzkumech v roce 2000, 71-73, Praha.
  • 35. Havlíček, P., 2004. Geology of the river Dyje and Moravou confluence area (in Czech). In: Lužní les v Dyjsko-moravské nivě (eds. M. Hrib and E. Kordiovský): 11-19. Moraviapress, Břeclav.
  • 36. Havlíček, P., Smolíková, L., 2002. Subrecent polygenetic pseudochernozem in the aeolian sands ("Barvínkův hrúd“) at the confluence of the Dyje and Morava Rivers (s. Moravia) (in Czech). Geologické výzkumy na Moravě a ve Slezsku, 9: 2-3.
  • 37. Havlíček, P., Břízová, E., Hošek, J., Sidorinová, T., 2016. Geologický výzkum na soutoku Dyje, Kyjovky a Moravy. Geoscience Research Reports, 49: 225-232.
  • 38. Hoffmann, T., Erkens, G., Gerlach, R., Klostermann, J., Lang, A., 2009. Trends and controls of Holocene floodplain sedimentation in the Rhine catchment. Catena, 77: 96-106. https://doi.org/10.1016/j.catena.2008.09.002.
  • 39. Holliday, V.T., Gartner, W.G., 2007. Methods of soil P analysis in archaeology. Journal of Archaeological Science, 34: 301-333. https://doi.org/10.1016/j.jas.2006.05.004
  • 40. Houben, P., 2003. Spatio-temporally variable response of fluvial systems to Late Pleistocene climate change: a case study from central Germany. Quaternary Science Reviews, 22: 2125-2140. https://doi.org/10.1016/S0277-3791(03)00181-1
  • 41. IUSS Working Group WRB, 2014. World reference base for soil resources 2014. In: World Soil Resources Reports No. 106 (eds. P. Schad, P.C. van Huyssteen and E. Micheli). FAO, Rome.
  • 42. Jiříček, R., Seifert, P., 1990. Paleogeography of the Neogene in the Vienna Basin and adjacent part of the foredeep. In: Thirty Years of Geological Cooperation Between Austria and Czechoslovakia (eds. D. Minaříková and H. Lobitzer): 89-105. Praha: ÚUG Special publication.
  • 43. Kadlec, J., Kocurek, G., Mohrig, D., Shinde, D.P., Murari, M.K., Varma, V., Stehlík, F., Beneš, V., Singhvi, A.K., 2015. Response of fluvial, aeolian, and lacustrine systems to late Pleistocene to Holocene climate change, Lower Moravian Basin, Czech Republic. Geomorphology, 232: 193-208. https://doi.org/10.1016/j.geomorph.2014.12.030
  • 44. Kadlec, J., Grygar, T., Světlík, I., Ettler, V., Mihaljevic, J.F., Diehl, S., Beske-Diehl, S., Svitavská-Svobodová, H., 2009. Morava River floodplain development during the last millenium, Strážnické Pomoraví, Czech Republic. The Holocene, 19: 499-510.
  • 45. Kalicki, T., 2006. Reflection of climatic changes and human activity and their role in the Holocene evolution of central European valleys (in Polish with English summary). Prace Geograficzne, 204.
  • 46. Komárek, J., Jankovská, V., 2001. Review of the Green Algal Genus Pediastrum; Implication for Pollenanalytical Research. Gebrüder Borntraeger, Berlin.
  • 47. Kwiatkowska-Malina, J., 2018. Functions of organic matter in polluted soils: the effect of organic amendments on phytoavailability of heavy metals. Applied Soil Ecology, 123: 542-545. https://doi.org/10.1016/j.apsoil.2017.06.021
  • 48. Lespez, L., Clet-Pellerin, M., Limondin-Lozouet, N., Pastre, J.F., Fontugne, M., Marcigny, C., 2007. Fluvial system evolution and environmental changes during the Holocene in the Mue valley (Western France). Geomorphology, 98: 55-70. https://doi.org/10.1016/j.geomorph.2007.02.029
  • 49. Leigh, D.S., 2006. Terminal Pleistocene braided to meandering transition in rivers of the South eastern USA. Catena, 66: 155-160.
  • 50. Lewin, J., Macklin, M.G., 2010. Floodplain catastrophes in the UK Holocene: messages for managing climate change. Hydrological Process, 24: 2900-2911. https://doi.org/10.1002/hyp.7704
  • 51. Macháček, J., 2001. Study to the pottery of the Great Moravia. Metody, analýzy a syntézy, modely Masarykova univerzita, Brno.
  • 52. Macháček, J., 2005. Raně středověké centrum na Pohansku u Břeclavi: Munitio, palatium, Nebo emporium moravských panovníků? (in Czech). Archeologické Rozhledy, 57: 100-138.
  • 53. Macháček, J., Doláková, N., Dresler, P., Havlíček, P., Hladilová, Š., Přichystal, A., Roszková, A., Smolíková, L., 2007. Early Medieval centre at Pohansko near Břeclav and its natural environment (in Czech). Archeologické Rozhledy, 59: 278-314.
  • 54. Macháček, J., Balcárková, A., Dresler, P., Přichystalová, R., Prišťáková, M., 2021. Břeclav - Pohansko X. Settlement areal on the southeastern forefield (in Czech). Archeologické výzkumy v letech 2008-2016. Masarykova univerzita, Brno. https://doi.org/10.5817/CZ.MUNI.M210-9893-2021
  • 55. Macklin, M.G., Lewin, J., Woodward, J.C., 2012. The fluvial record of climate change. Philosophical Transactions of the Royal Society A, 370: 2143-2172. https://doi.org/10.1098/rsta.2011.0608
  • 56. Makaske, B., 2001. Anastomosing rivers: a review of their classification, origin and sedimentary products. Earth Science Reviews, 53: 149-196.
  • 57. Mazuch, M., 2013. Velkomoravské keramické okruhy a tzv. mladší velkomoravský horizont v Mikulčicích (in Czech). Archeologický ústav AV ČR, Brno.
  • 58. Miall, A.D., 2006. The Geology of Fluvial Deposits. Sedimentary Facies, Basin Analysis, and Petroleum Geology. Springer, Berlin.
  • 59. Mol, J., Vandenberghe, J., Kasse, C., 2000. River response to variations of periglacial climate in mid-latitude Europe. Geomorphology, 33: 131-148. https://doi.org/10.1016/S0169-555X(99)00126-9.
  • 60. Moska, P., Bluszcz, A., Poreba, G., Tudyka, K., Adamiec, G., Szymak, A., Przybyla, A., 2021. Luminiscence dating procedures at the Gliwice Luminiscence Dating Laboratory. Geochronometria, 48: 1-15. https://doi.org/10.2478/geochr-2021-0001
  • 61. Mulder, T., Syvitski, J.P.M., 1995. Turbidity currents generated at river mouths during exceptional discharges to the world oceans. Journal of Geology, 103: 285-299. https://www.jstor.org/sta- ble/30071222
  • 62. Nehyba, S., Dresler, P., Doláková, N., Kuda, F., Prišťáková, M., Šimík, J., Škojec, J., Kirchner, K., 2020. The Early Medieval fluvial channel within the defence system of the Great Moravia Empire agglomeration Pohansko near Břeclav. Geologické výzkumy na Moravě a ve Slezsku, 27: 54-61. https://doi.org/10.5817/GVMS2020-13285
  • 63. Nehyba, S., Dvořáková, M., Doláková, N., Dresler, P., 2018. Quaternary deposits on the Northern bailey of the Pohansko site near Břeclav. Geologické výzkumy na Moravě a ve Slezsku, 25: 34-40. https://doi.org/10.5817/GVMS2018-1-2-34
  • 64. Notebaert, B., Verstraeten, G., 2010. Sensitivity of West and Central European river systems to environmental changes during the Holocene: a review. Earth-Science Reviews, 103: 163-182. https://doi.org/10.1016/j.earscirev.2010.09.009
  • 65. Notebaert, B., Broothaerts, N., Verstraeten, G., 2018. Evidence of anthropogenic tipping points in fluvial dynamics in Europe. Global and Planetary Change, 164, 27-38. https://doi.org/10.1016/j.gloplacha.2018.02.008.
  • 66. Opravil, E., 1978. Rostlinná společenstva v okolí Mikulčic v období předvelkomoravském a velkomoravském. (in Czech) Archeologické rozhledy, 30: 67-75.
  • 67. Opravil, E., 1983. Údolní niva v době hradištní (in Czech). Studie Arc. Archeologický Ústav Československé akademie věd Brno, Praha.
  • 68. Opravil, E., 2000. Archäobotanische Funde aus dem Burgwall Pohansko bei Břeclav. In: Studien zum Burgwall von Mikulčice (ed. L. Poláček): 165-169. Archeologický ústav AV, Brno.
  • 69. Pettijohn, F.J., Potter, P.E., Siever, R., 1973. Sand and Sandstone. Springer, Berlin.
  • 70. Petřík, J., Petr, L., Adameková, K., Prišťáková, M., Potůčková, A., Lenďáková, Z., Frączek, M., Dresler, P., Macháček, J., Kalicki, T., Lisá, L., 2019. Disruption in an alluvial landscape: Settlement and environment dynamics on the alluvium of the river Dyje at the Pohansko archaeological site (Czech Republic). QuarternaryInternational, 511: 124-139. https://doi.org/10.1016/j.quaint.2018.04.013
  • 71. Poláček, L., Hladík, M., 2014. Archaeological excavation B 2012 of the filled-up riverbed and bridge No. 1 in Mikulčice. In: Internationale Tagungen in Mikulčice X, Mikulčice River Archaelogy (ed. L. Poláček): 27-60. New Interdisciplinary Research into Bridge no. 1.
  • 72. Prišťáková, M., Milo, P., 2021. Using geophysical survey as a tool for resolving issues of the structure of the built-up area of the early medieval centre at Pohansko near B0eclav, Czech Republic. Archaeological Prospection, 28: 405-417. https://doi.org/10.1002/arp.1811
  • 73. Reille, M., 1995. Pollen et Spores d'Europe et d'Afrique du nord. Marseille.
  • 74. Rulf, J., 1994. Pravěké osídleni st0edni Evropy a niva (in Czech). In: Archeologie a Krajinná Ekologie (eds. J. Beneš and V. Bruna): 54-55. Nadace Projekt Sever, Most.
  • 75. Schlezinger, D.R., Howes, B.L., 2000. Organic phosphorus and elemental ratios as indicators of prehistoric human occupation. Journal of Archaeological Science, 27: 479-492. https://doi.org/10.1006/iasc.1999.0464
  • 76. Simons, D.B., Richardson, E.V., Nordin, C.L., 1965. Sedimentary structures generated by flow in alluvial channels. SEPM Special Publication 12: 84-115. https://doi.org/10.2110/pec.65.08.0034
  • 77. Skolasińska, K., Nowak, B., 2018. What fac tors affect the suspended sediment concentrations in rivers? A study of the upper Warta River (Central Poland). River Research and Applications, 34: 112-123. https://doi.org/10.1002/rra.3234
  • 78. Starkel, L., Soja, R., Michczyńska, D.J., 2006. Past hydrological events reflected in Holocene history of Polish rivers. Catena, 66: 24-33. https://doi.org/10.1016/i.catena.2005.07.008
  • 79. Sumner, E., Amy, L., Talling, P.J., 2008. Deposit structure and processes of sand deposition from a decelerating sediment sus - pension. Journal of Sedimentary Research, 78: 529-547. https://doi.org/10.2110/isr.2008.062
  • 80. Svobodová, H., 1990. Vegetace jižní Moravy v druhé polovině prvého tisíciletí" (in Czech). Archeologické rozhledy, 42: 170-205.
  • 81. Toonen, W.H.J., Kleinhans, M.G., Cohen, K.M., 2012. Sedimentary architecture of abandoned channel fills. Earth Surface Process and Landforms, 37: 459-472. https://doi.org/10.1002/esp.3189
  • 82. Tucker, M., 1988. Techniques in Sedimentology. Blackwell Science, Oxford.
  • 83. Vandenberghe, J., 2003. Climate forcing of fluvial system development: an evolution of ideas. Quaternary Science Reviews, 22: 2053-2060. https://doi.org/10.1016/S0277-3791(03)00213-0
  • 84. Vandenberghe, J., 2008. The fluvial cycle at cold-warm-cold transitions in lowland regions: a refinement of theory. Geomorphology, 98: 275-284. https://doi.org/10.1016/i.geomorph.2006.12.030
  • 85. Vandenberghe, J., Kasse, C., Bohncke, S., Kozarski, S., 1994. Climate-related river activity at the Weichselian-Holocene transition: a comparative study of the Warta and Maas rivers. Terra Nova, 6: 476-485. https://doi.org/10.1111/i.1365-3121.1994.tb00891.x
  • 86. Van Geel, B., Hallewas, D.P., Pals, J.P., 1983. A Late Holocene deposit under Wetfiese Zeediik near Enkhuizen (prov. of N-Holland, The Netherlands): paleoecological and archaeological aspects. Review of Paleobotany and Palynology, 38: 269-335. https://doi.org/10.1016/0034-6667(83)90026-X
  • 87. Vayssiěre, A., Rué, M., Recq, C., Gardere, P., Bozsó, E., Castanet, C., Virmoux, C., Gautier, E., 2019. Lateglacial changes in river morphologies of northwestern Europe: an example of a smooth response to climate forcing (Cher River, France). Geomorphology, 342: 20-36. https://doi.org/10.1111/i.1365-3121.1994.tb00891.x
  • 88. Walanus, A., Nalepka, D., 1999. POLPAL. Program for counting pollen grains, diagrams plotting and numerical analysis. Acta Palaeobotanica, 2: 659-661.
  • 89. Wallinga, J., 2008. Optically stimulated luminescence dating of fluvial deposits: a review. Boreas, 31: 303-322. http://dx.doi.org/10.1111/i.1502-3885.2002.tb01076.x.
  • 90. Walker, R.G., James, N.P., 1992. Facies Models. Response to sea level changes. Geological Association of Canada, St. John's. https://doi.org/10.1002/gi.3350290317
  • 91. Zieliński, T., Widera, M., 2020. Anastoming-to-meandering transitional river in sedimentary record: a case study from the Neogene of central Poland. Sedimentary Geology, 404: 1-17. https://doi.org/10.1016/i.sedgeo.2020.105677
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4cffb28e-792d-40da-8206-e3db35274b0e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.