Czasopismo
2004
|
Vol. 24, Fasc. 2
|
263--279
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we firstly study the Besov regularity of the local time of symmetric stable processes and of its fractional derivative. Secondly, we establish limit theorems for occupation times of α-symmetric stable processes with 1 < α ≤ 2 in some Besov spaces. Finally, we give the strong approximation version of our limit theorems.
Czasopismo
Rocznik
Tom
Strony
263--279
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
- Département de Mathématiques, Faculté des Sciences Semlalia, UCAM, B.P. 2390, Marrakech, Maroc
autor
- Département de Mathématique et Informatique, Faculté des Sciences et Techniques, UCAM, B.P. 549, Marrakech, Maroc
autor
- Département de Mathématiques, Faculté des Sciences Semlalia, UCAM, B.P. 2390, Marrakech, Maroc
Bibliografia
- [1] M. Ait Ouahra et M. Eddahbi, Théorèmes limites pour certaines fonctionnelles associées aux processus stable sur l'espace de Hölder, Publ. Mat. 45 (2) (2001), pp. 371-386.
- [2] M. T. Barlow, Necessary and sufficient conditions for the continuity of local times, Ann. Probab. 16 (4) (1988), pp. 1389-1427.
- [3] P. Billingsley, Convergence of Probability Measures, Wiley, New York 1968.
- [4] B. Boufoussi, M. Eddahbi et A. Kamont, Sur la dérivée fractionnaire du temps local brownien, Probab. Math. Statist. 17 (2) (1997), pp. 311-319.
- [5] E. S. Boylan, Local times for a class of Markoff processes, Illinois J. Math. 8 (1964), pp, 19-39.
- [6] Z. Ciesielski, Orlicz spaces, spline systems and Brownian motion, Constr. Approx. 9 (1993), pp. 191-208.
- [7] Z, Ciesielski, G. Kerkyacharian et B. Roynette, Quelques espaces fonctionels associes à des processus gaussiens, Studia Math. 107 (2) (1993), pp. 171-204.
- [8] E. Csaki, Z. Shi and M. Yor, Fractional Brownian motions as "higher-order" fractional derivatives of Brownian local times, in; Limit Theorems in Probability and Statistics, Vol. I (Balatonlelle, 1999), János Bolyai Math. Soc., Budapest 2002, pp. 365-387.
- [9] P. J. Fitzsimmons and R. K. Getoor, Limit theorems und variation properties for fractional derivatives of the local time of a stable process, Ann. Inst. H. Poincaré Probab. Statist. 28 (2) (1992), pp. 311-333.
- [10] S. L. Hahn, Hilbert Transforms in Signal Processing, Artech House, Boston 1996.
- [11] G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. I, Math. Z. 27 (1928), pp. 567-606.
- [12] M. B. Marcus and J. Rosen, p-variation of the local times of symmetric stable processes and of Gaussian processes with stationary increments, Ann. Probab. 20 (4) (1992), pp. 1685-1713.
- [13] J. Peetre, New Thoughts on Besov Spaces, Duke Univ. Math. Series, Durham, NC, 1976.
- [14] S. Ropela, Spline basis in Besov spaces, Bull. Acad. Polon. Sci., Sér. Sci. math. astronom. phys. 24 (1976), pp. 319-325.
- [15] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Science Publishers, Yverdon 1993.
- [16] E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, 2nd edition, Clarendon Press, Oxford 1948.
- [17] K. Yamada, Fractional derivative of local times of α-stable Lévy processes as the occupation time problems, Proceedings of the Fourth Hungarian Colloquium on Limit Theorems of Probability and Statistics, Balatonllele, Hungary, 1999.
- [18] T. Yamada, On some limit theorems for occupation times of one-dimensional Brownian motion and its continuous additive functionals locally of zero energy, J. Math. Kyoto Univ. 26 (2)(1986), pp. 309-322.
- [19] K. Yosida, Functional Analysis, Springer, 1965.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4ce6f5dd-8430-48db-9edf-cc0b1dd817b3