Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 15, no. 2 | 525--531
Tytuł artykułu

Optimal arrangement of reinforcement in composites

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper the problem of the optimal arrangement of the reinforcement in particulate reinforced composites is considered. The criterion of the optimization is the maximization of the stiffness of composites represented by the effective elastic Young modulus. The coupled boundary and finite element method (BEM/FEM) is used to model and analyze representative volume elements (RVEs) of the material. A matrix is modelled by the BEM and reinforcement by the FEM by means of beam finite elements. The optimization problem is solved by the evolutionary algorithm. In numerical examples, composites with aligned and uniformly distributed reinforcement in the matrix are studied. The assumed material properties and the dimensions of constituents are typical for nanocomposites with single and two-layer platelet-like particles, however, the method can be used for different kinds of particulate composites. As a result of the optimization, an improvement of the stiffness is obtained in comparison with the initial microstructures. The presented approach allows the efficient optimization of both structures on a macro level and the microstructures of materials by analyzing RVEs.
Wydawca

Rocznik
Strony
525--531
Opis fizyczny
Bibliogr. 26 poz., rys., wykr.
Twórcy
  • Institute of Computational Mechanics and Engineering, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland, Piotr.Fedelinski@polsl.pl
autor
  • Institute of Computational Mechanics and Engineering, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland, Radoslaw.Gorski@polsl.pl
Bibliografia
  • [1] W. Beluch, Evolutionary identification and optimization of composite structures, Mechanics of Advanced Materials and Structures 14 (8) (2007) 677–686.
  • [2] C.A. Brebbia, J. Dominguez, Boundary Elements. An Introductory Course, Computational Mechanics Publications, Southampton, 1992.
  • [3] T. Burczyński, Boundary Element Method in Mechanics, Scientific and Technical Publishing WNT, Warsaw, 1995 (in Polish).
  • [4] T. Burczyński, Boundary Element Method in Selected Analysis and Optimization Problems of Deformable Systems, vol. 97, Scientific Papers of Silesian Technical University, Mechanics, Gliwice, 1989 (in Polish).
  • [5] T. Burczyński, P. Fedeliński, Boundary elements in shape design sensitivity analysis and optimal design of vibrating structures, Engineering Analysis with Boundary Elements 9 (1992) 195–202.
  • [6] X.L. Chen, Y.J. Liu, Square representative volume elements for evaluating the effective material properties of carbon nanotube-based composites, Computational Materials Science 29 (2004) 1–11.
  • [7] X.L. Chen, Y.J. Liu, An advanced 3D boundary element method for characterizations of composite materials, Engineering Analysis with Boundary Elements 29 (2005) 513–523.
  • [8] T. Czyż, G. Dziatkiewicz, P. Fedeliński, R. Górski, J. Ptaszny, Advanced Computer Modelling in Micromechanics, Monograph, No. 427, Wydawnictwo Politechniki Śląskiej, Gliwice, 2013.
  • [9] G. Duvaut, G. Terrel, F. Lene, V.E. Verijenko, Optimization of fiber reinforced composites, Composite Structures 48 (2000) 83–89.
  • [10] P. Fedeliński, R. Górski, Analysis and optimization of dynamically loaded reinforced plates by the coupled boundary and finite element method, Computer Modeling in Engineering and Sciences 15 (1) (2006) 31–40.
  • [11] P. Fedeliński, R. Górski, G. Dziatkiewicz, J. Ptaszny, Computer modelling and analysis of effective properties of composites, Computer Methods in Materials Science 11 (1) (2011) 3–8.
  • [12] X.W. Gao, T.G. Davies, Boundary Element Programming in Mechanics, Cambridge University Press, Cambridge, 2002.
  • [13] L. Gong, I.A. Kinloch, R.J. Young, I. Riaz, R. Jalil, K.S. Novoselov, Interfacial stress transfer in a graphene monolayer nanocomposite, Advanced Materials 22 (24) (2010) 2694–2697.
  • [14] L. Gong, R.J. Young, I.A. Kinloch, I. Riaz, R. Jali, K.S. Novoselov, Optimizing the reinforcement of polymer-based nanocomposites by graphene, ACS Nano 6 (3) (2012) 2086–2095.
  • [15] R. Górski, Elastic properties of composites reinforced by wavy carbon nanotubes, Mechanics and Control 30 (4) (2011) 203–212.
  • [16] R. Górski, P. Fedeliński, Analysis, optimization and identification of composite structures using boundary element method, Journal of Computational and Applied Mechanics 6 (1) (2005) 53–65.
  • [17] A.K. Hartmann, H. Rieger, Optimization Algorithms in Physics, Wiley-VCH Verlag, Berlin, 2002.
  • [18] J. Huang, R.T. Haftka, Optimization of fiber orientations near a hole for increased load-carrying capacity of composite laminates, Structural Multidisciplinary Optimization 30 (2005) 335–341.
  • [19] P. Konderla, Optimization of composite structure shape with boundary element method approach, Archives of Civil and Mechanical Engineering 5 (3) (2005) 83–94.
  • [20] X. Legrand, D. Kelly, A. Crosky, D. Crepin, Optimisation of fibre steering in composite laminates using a genetic algorithm, Composite Structures 75 (2006) 524–531.
  • [21] L.G.S. Leite, H.B. Coda, W.S. Venturini, Two-dimensional solids reinforced by thin bars using the boundary element method, Engineering Analysis with Boundary Elements 27 (2003) 193–201.
  • [22] Y.J. Liu, X.L. Chen, Continuum models of carbon nanotube-based composites using the boundary element method, Electronic Journal of Boundary Elements 1 (2) (2003) 316–335.
  • [23] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, Springer-Verlag, Berlin, 1996.
  • [24] N. Sheng, M.C. Boyce, D.M. Parks, G.C. Rutledge, J.I. Abes, R.E. Cohen, Multiscale micromechanical modeling of polymer/ clay nanocomposites and the effective clay particle, Polymer 45 (2004) 487–506.
  • [25] L. Zhu, K.A. Narh, Numerical simulation of the tensile modulus of nanoclay-filled polymer composites, Journal of Polymer Science: Part B: Polymer Physics 42 (2004) 2391–2406.
  • [26] O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method, vols. I, II, III, Butterworth, Oxford, 2000.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4ce6677a-64d4-47d6-ad4f-fae1d4c5ba4a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.