Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 41, nr 1 | 79-87
Tytuł artykułu

Frictional characteristics of EN AW-6082 aluminium alloy sheets used in metal forming

Treść / Zawartość
Warianty tytułu
PL
Charakterystyka tarciowa blach ze stopu aluminium EN AW-6082 stosowanych w obróbce plastycznej metali
Języki publikacji
EN
Abstrakty
EN
This article is devoted to testing EN AW-6082 aluminium alloy sheets in friction pair with NC6 (1.2063) tool steel. A special tribometer designed to simulate the friction conditions in sheet metal forming processes was used for friction testing. The research aimed to determine the influence of contact pressure, surface roughness of the tool, and lubrication conditions on the value of the coefficient of friction in the strip drawing test. Three grades of typical petroleum-based lubricants with kinematic viscosities between 21.9 and 97 mm2/s were used in the tests. The surface morphologies of the sheet metal after the friction process were observed using a scanning electron microscope. A tendency for the coefficient of friction to decrease with increasing contact pressure was observed. LHL32 and 75W-85 oils lost their lubricating properties at a certain pressure value and with further increase in pressure, the coefficient of friction value tended to increase. The 10W-40 oil with the highest viscosity reduced the coefficient of friction more intensively than the LHL32 oil.
PL
Artykuł poświęcony jest badaniom tarciowym blach ze stopu aluminium EN AW-6082 w parze ciernej ze stalą narzędziową NC6 (1.2063). Do badań tarcia wykorzystano specjalny tribotester przeznaczony do symulacji warunków tarcia w procesach kształtowania blach. Celem badań było określenie wpływu nacisk kontaktowego, chropowatości powierzchni narzędzia i warunków smarowania na wartość współczynnika tarcia w próbie ciągnienia pasa blachy. Do badań wykorzystano trzy gatunki typowych smarów na bazie ropy naftowej o lepkości kinematycznej od 21,9 do 97 mm2/s. Morfologię powierzchni blach po procesie tarcia obserwowano za pomocą skaningowego mikroskopu elektronowego. Zaobserwowano tendencję do zmniejszania się wartości współczynnika tarcia wraz ze wzrostem nacisku kontaktowego. Oleje LHL32 i 75W-85 przy określonej wartości nacisku kontaktowego traciły swoje właściwości smarne i wraz z dalszym wzrostem nacisku zaobserwowano zwiększanie się wartości współczynnik a tarcia. Olej 10W-40 o najwyższej lepkości kinematycznej zapewnił większe zmniejszenie wartości współczynnik a tarcia niż olej LHL32.
Wydawca

Rocznik
Strony
79-87
Opis fizyczny
Bibliogr. 32 poz., rys., atb., wykr.
Twórcy
autor
  • The Institute of Technology and Material Engineering, Faculty of Mechanical Engineering, Technical University of Košice, Slovakia, jan.slota@tuke.sk
  • The Institute of Technology and Material Engineering, Faculty of Mechanical Engineering, Technical University of Košice, Slovakia, lubos.kascak@tuke.sk
  • Faculty of Industrial Engineering, Robotics and Production Management , Technical University of Cluj-Napoca, Romania, lucian.lazarescu@tcm.utcluj.ro
Bibliografia
  • 1. 6082-T6 Aluminum. (2023, January 10) https://www.makeitfrom.com/material-properties/6082-T6-Aluminum
  • 2. Aiman, Y., & Syahrullail, S. (2020, July 13). Ring compression test of aluminum alloy AA6061 using palm mid olein as a metal forming lubricant. Proceedings of Mechanical Engineering Research Day MERD’22, (pp. 272-276). UTeM Press.
  • 3. Bay, N., Olsson, D. D., & Andreasen J. L. (2008). Lubricant test methods for sheet metal forming. Tribology International, 41(9-10), 844–853. https://doi.org/10.1016/j.triboint.2007.11.017
  • 4. Bellini, C., Giuliano, G., & Sorrentino, L. (2019). Friction influence on the AA6060 aluminium alloy formability. Frattura ed Integrità Strutturale, 49, 791–799. http://dx.doi.org/10.3221/IGF-ESIS.49.70
  • 5. Chruściński, M., Wielowiejska-Giertuga, A., Garbiec, D., Rubach, R., & Ziółkiewicz, S. (2017). Badania tribologiczne materiałów przeznaczonych na elementy łożysk tocznych. Obróbka Plastyczna Metali, 4, 239–250.
  • 6. Domitner, J., Silvayeh, Z., Sabet, A. S., Öksüz, K. I., Pelcastre, L., & Hardell, J. (2021). Characterization of wear and friction between tool steel and aluminum alloys in sheet forming at room temperature. Journal of Manufacturing Processes, 64, 774–784. https://doi.org/10.1016/j.jmapro.2021.02.007
  • 7. Dou, S., & Xia, J. (2019). Analysis of sheet metal forming (stamping process): A study of the variable friction coefficient on 5052 aluminum alloy. Metals, 9(8), Article 853. https://doi.org/10.3390/met9080853
  • 8. Dubey, R., Jayagantham, R., Ruan, D., Gupta, N. K., Jones, N., & Velmurugan R. (2023). Energy absorption and dynamic behaviour of 6xxx series aluminium alloys: A review. International Journal of Impact Engineering, 172, Article 104397. https://doi.org/10.1016/j.ijimpeng.2022.104397
  • 9. Dubois, A., Filali, O., & Dubar, L. (2024). Effect of roughness, contact pressure and lubrication on the onset of galling of the 6082 aluminium alloy in cold forming, a numerical approach. Wear, 536-537, 205179. https://doi.org/10.1016/j.wear.2023.205179
  • 10. Graba, M. (2020). Characteristics of selected measures of stress triaxiality near the crack tip for 145Cr6 steel - 3D issues for stationary cracks. Open Engineering, 10(1), 571–585. https://doi.org/10.1515/eng-2020-0042
  • 11. Haar, R. (1996). Friction in sheet metal forming, the influence of (local) contact conditions and deformation [Doctoral dissertation, Universiteit Twente]. Universiteit Twente Repository. https://ris.utwente.nl/ws/portalfiles/portal/6079817/thesis_R_ter_Haar.pdf
  • 12. Hol, J., Wiebenga, J. H., & Carleer, B. (2017). Friction and lubrication modelling in sheet metal forming: Influence of lubrication amount, tool roughness and sheet coating on product quality. Journal of Physics: Conference Series, 896, Article 012026. https://doi.org/10.1088/1742-6596/896/1/012026
  • 13. Hu, Y., Zheng, Y., Politis, D. J., Masen, M. A., Cui, J., & Wang L. (2019). Development of an interactive friction model to predict aluminum transfer in a pin-on-disc sliding system. Tribology International, 130, 216–228. https://doi.org/10.1016/j.triboint.2018.08.034
  • 14. Jewvattanarak, P., Mahayotsanun, N., Mahabunphachai, S., Ngernbamrung, S., & Dohda, K. (2016). Tribological effects of chlorine-free lubricant in strip drawing of advanced high strength steel. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 230(8), 974–982. https://doi.org/10.1177/1350650115622366
  • 15. Kaščák, Ľ., Cmorej, D., Spišák, E., & Slota, J. (2021). Joining the high-strength steel sheets used in car body production. Advances in Science and Technology Research Journal, 15(1), 184–196. https://doi.org/10.12913/22998624/131739
  • 16. Lachmayer, R., Behrens, B. A., Ehlers, T., Müller, P., Althaus, P., Oel, M., Farahmand, E., Gembarski, P. C., Wester, H., & Hübner, S. (2022). Process-integrated lubrication in sheet metal forming. Journal of Manufacturing and Materials Processing, 6(5), Article 121. https://doi.org/10.3390/jmmp6050121
  • 17. Ludwig, M., Müller, C., & Groche, P. (2010). Simulation of dynamic lubricant effects in sheet metal forming processes. Key Engineering Materials, 438, 171–178. https://doi.org/10.4028/www.scientific.net/KEM.438.171
  • 18. Luiz, V. D., Santos, A. J. D., Câmara, M. A., & Rodrigues, P. C. D. M. (2023). Influence of different contact conditions on friction properties of AISI 430 steel sheet with deep drawing quality. Coatings, 13(4), Article 771. https://doi.org/10.3390/coatings13040771
  • 19. Lukovic, M. (2019). The influence of surface temperature on the coefficient of static friction. The Physics Teacher, 57, 636–638. https://doi.org/10.1119/1.5135798
  • 20. Meiler, M., Pfestorf, M., Geiger, M., & Merklein, M. (2003). The use of dry film lubricants in aluminum sheet metal forming. Wear, 255(7-12), 1455–1462. https://doi.org/10.1016/S0043-1648(03)00087-5
  • 21. Mohamed, M., Farouk, M., Elsayed, A., Shazly, M., & Hezagy, A. (2017). An investigation of friction effect on formability of AA 6061-T4 sheet during cold forming condition. AIP Conference Proceedings, 1896, Article 080025. https://doi.org/10.1063/1.5008105
  • 22. Mukhopadhyay, P. (2012). Alloy designation, processing, and use of AA6xxxx series aluminium alloys. International Scholarly Research Notices, 2012, Article 165082. https://doi.org/10.5402/2012/165082
  • 23. Mulidrán, P.; Spišák, E.; Tomáš, M.; Majerníková, J.; Bidulská, J.; & Bidulský, R. (2023). Impact of blank holding force and friction on springback and its prediction of a hat-shaped part made of dual-phase steel. Materials, 16(2), Article 811. https://doi.org/10.3390/ma16020811
  • 24. Nasake, T., & Sakuragi, K. (2017). Surface treatment of aluminium alloy for tribological applications. KYB Technical Review, 55, 18–24.
  • 25. Onuseit, V., Umlauf, G., Reichle, P., Barz, J. P., Tovar, G., & Hirth, T. (2020). Tribological system for cold sheet metal forming based on volatile lubricants and laser structured surfaces. Dry Metal Forming Open Access Journal, 6, 128–165. https://doi.org/10.26092/elib/156
  • 26. Reddy, I. S., & Vadivuchezhian, K. (2020). Sliding of various ductile materials (Al 6061, Al 6082) using pin on disc setup. Materials Today: Proceedings, 27, 2688–2692. https://doi.org/10.1016/j.matpr.2019.11.248
  • 27. Reichardt, G., Wörz, C., Singer, M., Liewald, M., Henn, M., Förster, D. J., Zahedi, E., Boley, S., Feuer, A., Onuseit, V., Weber, R., Graf, T., Umlauf, G., Reichle, P., Barz, J.P., Tovar, G., & Hirth, T. (2020). Tribological system for cold sheet metal forming based on volatile lubricants and laser structured surfaces. Dry Metal Forming Open Access Journal, 6, 128-165. https://doi.org/10.26092/elib/156
  • 28. Sabet, A. S., Domitner, J., Öksüz, K. I., Hodžić, E., Torres, H., Ripol, M. R., & Sammitsch, C. (2021). Tribological investigations on aluminum alloys at different contact conditions for simulation of deep drawing processes. Journal of Manufacturing Processes, 68, 546–557. https://doi.org/10.1016/j.jmapro.2021.05.050
  • 29. Slota, J., Šiser, M. & Dvorák, M. (2017). Experimental and numerical analysis of springback behavior of aluminum alloys. Strength of Materials, 49, 565–574. https://doi.org/10.1007/s11223-017-9900-6
  • 30. Tan, J. L., & Liew, K. W. (2023). Tribological behaviour and microstructure of an aluminium alloy-based g-SiC hybrid surface composite produced by FSP. Lubricants, 11(3), Article 124. https://doi.org/10.3390/lubricants11030124
  • 31. Xia, J., Zhao, J., & Dou, S. (2022). Friction characteristics analysis of symmetric aluminum alloy parts in warm forming process. Symmetry, 14(1), Article 166. https://doi.org/10.3390/sym14010166
  • 32. Xu, W., Gao, X., Zhang, B., Yang, L., Du, C., Zhou, D., Rawya, B., & Szymanski, M. (2018). Study on frictional behavior of AA 6XXX with three lube conditions in sheet metal forming. SAE Technical Paper, 2018-01–0810. https://doi.org/10.4271/2018-01-0810
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4cb5efac-a7ca-4cd0-a213-d0638604712f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.