Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | Vol. 34, no. 2 | 51--59
Tytuł artykułu

The influence of cooling techniques on surface roughness and tool wear during cryogenic machining

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Wpływ metod chłodzenia na chropowatość powierzchni obrobionej i zużycie narzędzia w obróbce kriogenicznej
Języki publikacji
EN
Abstrakty
EN
The main objective of this work is a comparision of different cooling techniques, namely cutting zone cooling, cutting tool cooling and workpiece cooling. The literature survey related to the analysis of surface texture (Ra) and tool wear (VBc) after applying different cooling techniques was also taken into account. The analysis revealed that the applied cooling technique has a significant influence on the values of parameters of surface’s roughness. Furthermore, in all cases observed, there was a positive influence of cryogenic machining on selected physical and technical aspects after turning and milling such materials as Inconel 718, titanium alloy Ti-6Al-4V, aluminium alloys and elastomers. This work can also be considered as a starting point for further research and the analysis of machinability during cryogenic machining.
PL
Celem niniejszego artykułu było porównanie metod obróbki kriogenicznej: chłodzenia strefy skrawania, chłodzenia przedmiotu obrabianego oraz chłodzenia narzędzia. Przedstawiono wpływ powyższych metod na chropowatość powierzchni obrobionej (Ra) oraz zużycie narzędzia (VBc). Porównanie wykazało istotny wpływ metody obróbki na chropowatość powierzchni obrobionej. Ponadto we wszystkich przypadkach zauważono pozytywny wpływ obróbki kriogenicznej na wybrane właściwości fizyczne po toczeniu i frezowaniu takich materiałów, jak: Inconel 718, stop tytanu Ti-6A1-4V, stopy aluminium, oraz materiały elastomerowe. Może to stanowić punkt wyjścia do dalszych badań skrawalności materiałów w niskiej temperaturze.
Wydawca

Rocznik
Strony
51--59
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
  • Institute of Mechanical Technology, Poznan University of Technology
autor
  • Institute of Mechanical Technology, Poznan University of Technology
Bibliografia
  • [1] Bermingham M. et al., A comparison of cryogenic and high pressure emulsion cooling technologies on tool life and chip morphology in Ti-6A1-4V cutting, Journal of Materials Processing Technology, 2012, vol. 212, no. 4, p. 752-765.
  • [2] Biermann D., Heilmann M., Improvement of workpiece quality in face milling of aluminum alloys, Journal of Materials Processing Technology, 2010, vol. 210, no. 14, p. 1968-1975.
  • [3] Dandekar C.R., Shin Y.C., Barnes J., Machinability improvement of titanium alloy (Ti-6A1-4V) via LAM and hybrid machining, International Journal of Machine Tools and Manufacture, 2010, vol. 50, no. 2, p. 174-182.
  • [4] Dhokia V.G. et al., A methodology for the determination of foamed polymer contraction rates as a result of cryogenic CNC machining, Robotics and Computer-Integrated Manufacturing, 2010, vol. 26, no. 6, p. 665-670.
  • [5] Evans C., Cryogenic diamond turning of stainless Steel, Annals of the CIRP, 1991, vol. 40, no. 1, p. 571-575.
  • [6] Evans C., Bryan J.B., Cryogenic diamond turning of stainless Steel, CIRP Annals -Manufacturing Technology, 1991, vol. 40, no. 1, p. 571-575.
  • [7] Grzesik W., Polepszanie jakości technologicznej i użytkowej części z materiałów utwardzonych. Cz. I. Obróbka wspomagana i hybrydowa, Mechanik, 2001, nr 7, p. 564-569.
  • [8] Grzesik W. et al., Effects of cryogenic cooling on surface layer characteristics produced by hard turning, Archives of Materials Science and Engineering, 2012, 54/1, p. 5-12.
  • [9] Hong S.Y., Ding Y., Cooling approaches and cutting temperatures in cryogenic machining of Ti-6A1-4V, International Journal of Machine Tools and Manufacture, 2001, vol. 41, p. 1417-1437.
  • [10] Kakinuma Y., Yasuda N., Aoyama T., Micromachining of soft polymer material applying cryogenic cooling, Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2008, vol. 2, no. 4, p. 560-569.
  • [11] Kakinuma Y., Kidani S., Aoyama T., Ultraprecision cryogenic machining of viscoelastic polymers, CIRP Annals - Manufacturing Technology, 2012, vol. 61, no. 1, p. 79-82.
  • [12] Kenda J., Pusavec F., Kopac J., Analysis of residual stresses in sustainable cryogenic machining of nickel based alloy - Inconel 718, Journal of Manufacturing Science and Engineering, 2011, vol. 133, p. 041009-041007.
  • [13] Kopac J., Achievements of sustainable manufacturing by machining, Manufacturing Engineering, 2009, vol. 34, no. 2, p. 180-187.
  • [14] Mishima K., Kakinuma Y., Aoyama T., Pre-deformation-assisted cryogenic micromachining for fabrication of three-dimensional unique micro channels, Journal of Advanced Mechanical Design, Systems and Manufacturing, 2010, vol. 4, no. 5, p. 936-947.
  • [15] Pusavec F. et al., Surface integrity in cryogenic machining of nickel based alloy - Inconel 718, Journal of Materials Processing Technology, 2011, vol. 211, no. 4, p. 773-783.
  • [16] Sharma V.S., Dogra M., Suri N.M., Cooling techniques for improved productivity in turning, International Journal of Machine Tools & Manufacture, 2009, vol. 49, p. 435^15.
  • [17] Shokrani A., An initial study of the effect of using liquid nitrogen coolant on the surface roughness of Inconel 718 nickel-based alloy in CNC milling, in: 45th CIRP Conference on Manufacturing Systems, Athenes 2012.
  • [18] Shokrani A. et al., State-of-the-art cryogenic machining and processing, International Journal of Computer Integrated Manufacturing, 2013, vol. 26, no. 7, p. 616-648.
  • [19] Ulutan D., Ozel T., Machining induced surface integrity in titanium and nickel alloys: a review, International Journal of Machine Tools and Manufacture, 2011, vol. 51, no. 3, p. 250-280.
  • [20] Venugopal K., Paul S., Chattopadhyay A., Tool wear in cryogenic turning of Ti-6A1-4V alloy, Cryogenics, 2007, vol. 47, no. 1, p. 12-18.
  • [21] Wang Z.Y., Hybrid machining of Inconel 718, International Journal of Machine Tools and Manufacture, 2003, vol. 43, no. 13, p. 1391-1396.
  • [22] Wang Z.Y., Rajurkar K.P., Murugappan M., Cryogenic PCBN turning of ceramic (S&N), Wear, 1996, vol. 195, p. 1-6.
  • [23] Wang Z.Y., Rajurkar K.P., Murugappan M., Wear of CBN tools in turning of Silicon nitride with cryogenic cooling, International Journal of Machine Tools & Manufacture, 1997, vol. 37, no. 3, p. 319-326.
  • [24] Yildiz Y., Nalbant M., A review of cryogenic cooling in machining processes, International Journal of Machine Tools and Manufacture, 2008, vol. 48, no. 9, p. 947-964.
  • [25] Yuan S.M. et al., Effects of cooling air temperature on cryogenic machining of Ti-6A1-4V alloy, Journal of Materials Processing Technology, 2011, vol. 211, no. 3, p. 356-362.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4c8b36bf-fd73-4518-88ef-ecf90d138e29
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.