Warianty tytułu
Właściwości mechaniczne vs degradacja biotyczna nanokompozytów poliamid/krzemiany warstwowe
Języki publikacji
Abstrakty
The purpose of this study was to obtain polyamide 6 nanocomposites with different organically modified clays and to study the biotic degradation behaviour vs mechanical properties of the obtained materials. Thermal stability of pure organoclays was investigated using thermogravimetric analysis (TGA). The prepared nanocomposites were characterized by X-ray diffraction (XRD) and infrared spectroscopy (IR). The evolution of mechanical properties was also studied. The obtained results confirm good interactions of nanofillers with the polymer, showing the formation of intercalated and/or partially exfoliated structures. The nanocomposites showed higher thermal stability compared to pure polymer, and advantageous mechanical properties. Finally, a discussion related to the effects of biotic degradation on mechanical properties of PA6/MMT nanocomposites is presented.
Celem przeprowadzonych badań było otrzymanie nanokompozytów poliamidowych z różnym typem organicznie modyfikowanej glinki. Stabilność termiczna czystych glinek mierzono za pomocą analizy termograwimetrycznej (TGA). Otrzymane nanokompozyty zostały scharakteryzowane przy wykorzystaniu dyfrakcji promieni rentgenowskich (XRD) oraz spektroskopii w podczerwieni (IR). Zbadano również zmiany własności mechanicznych. Uzyskane wyniki potwierdzają dobrą interkalację nanonapełniaczy z matrycą polimerową, pokazując tworzenie struktur częściowo eksfoliowanych. Nanokompozyty wykazały wyższą stabilność termiczną w porównaniu do czystego poliamidu. Artykuł zamyka dyskusja związana ze skutkami degradacji biotycznej nanokompozytów PA6/MMT na ich właściwości mechaniczne.
Czasopismo
Rocznik
Tom
Strony
93--111
Opis fizyczny
Bibliogr. 29 poz., tab., wykr., wz.
Twórcy
autor
- Department of Chemistry and Technology of Polymers, Faculty of Chemical Engineering and Technology, Cracow University of Technology, tomasz.majka@pk.edu.pl
autor
- Department of Chemistry and Technology of Polymers, Faculty of Chemical Engineering and Technology, Cracow University of Technology
autor
- Department of Chemistry and Technology of Polymers, Faculty of Chemical Engineering and Technology, Cracow University of Technology
Bibliografia
- [1] Scala E.P., A Brief History of Composites in the U.S.—The Dream and the Success, Journal of the Minerals, Metals and Materials Society, 48(2), 1996, 49–48.
- [2] Pavlidou S., Papaspyrides C.D., A review on polymer-layered silicate nanocomposites, Progress in Polymer Science, 33, 2008, 1119–1198.
- [3] Ray S.S., Okamoto M., Polymer/layered silicate nanocomposites: a review from preparation to processing, Progress in Polymer Science, 28, 2003, 1539–1641.
- [4] Leszczyńska A., Njuguna J., Pielichowski K., Banerjee J.R., Polymer/ montmorillonite nanocomposites with improved thermal properties Part II, Thermochimica Acta, 454, 2007, 1-22.
- [5] Leszczyńska A., Njuguna J., Pielichowski K., Banerjee J.R., Polymer/ montmorillonite nanocomposites with improved thermal properties Part I, Thermochimica Acta, 453, 2007, 75.
- [6] Leszczyńska A., Pielichowski K., Application of thermal analysis methods for characterization of polymer/montmorillonite nanocomposites, Journal of Thermal Analysis and Calorimetry, 93(3), 2008, 677–687.
- [7] Pielichowski K., Leszczyńska A., Polyoxymethylene-based nanocomposites with montmorylonite: oan introductory study, Polimery, 2, 2006, 60–66.
- [8] Vaccari A., Clays and catalysis: a promising future, Applied Clay Science, 14, 1999, 161–244.
- [9] Kim N.H., Malhotra S.V., Xanthos M., Modification of cationic nanoclays with ionic liquids, Microporous Mesoporous Materials, 96, 2006, 29.
- [10] Morfis S., Philippoulos C., Papayannakos N., Application of Al-pillared clay minerals as catalytic carriers for the reaction of NO with CO, Applied Clay Science, 13, 1998, 203.
- [11] Christidis G.E., Scott P.W., Dunham A.C., Acid activation and bleaching capacity of bentonites from the islands of Milos and Chios, Aegean, Greece, Applied Clay Science, 12, 1997, 329.
- [12] Duleba B., Spišák E., Greškovič F., Optimization of injection molding process by DOE, Procedia Engineering, 96, 2014, 75–80.
- [13] Wu S., Jiang D., Ouyang X., Wu F., Shen J., The structure and properties of PA6/MMT nanocomposites prepared by melt compounding, Polymer Engineering & Science, 44, 2004, 2070–2074.
- [14] Kherrou D.E., Belbachir M., Lamouri S., Bouhadjar L., Chikh K., Synthesis of Polyamide-6/Montmorillonite Nanocomposites by Direct In-situ Polymerization Catalysed by Exchanged Clay, Oriental Journal of Chemistry, 29(4), 2013, 1429–1436.
- [15] Stoeffler K., Utracki L.A., Simard Y., Labonte S., Polyamide 12 (PA12)/clay nanocomposites fabricated by conventional extrusion and water-assisted extrusion processes, Journal of Applied Polymer science, 130(3), 2013, 1959–1974.
- [16] Dintcheva Z.T., Filippone G., Arrigo R., La Mantia F.P., Low-Density Polyethylene/Polyamide/Clay Blend Nanocomposites: Effect of Morphology of Clay on Their Photooxidation Resistance, Journal of Nanomaterials, vol. 2017, Article ID 3549475, 2017, 9, doi:10.1155/2017/3549475.
- [17] Rotter G., Ishida H., FTIR separation of nylon-6 chain conformations: Clarification of the mesomorphous and γ-crystalline phases, Journal of Polymer Science Part B, 30, 1992, 489.
- [18] Goderis B.,Klein P.G., Hill S.P., Koning C.E., A comparative DSC, X-Ray and NMR study on the crystallinity of isomeric aliphatic polyamides, Progress in Colloid and Polymer Science, 130, 2005, 40–50.
- [19] Liu T.X., Liu Z.H., Ma K.X., Shen K.Y., He C.B., Morphology, thermal and mechanical behavior of polyamide 6/layered-silicate nanocomposites, Composites Science and Technology 63, 2003, 331–337.
- [20] Lincoln D.M., Vaia R.A., Wang Z.G., Hsiao B.S., Secondary structure and elevated temperature crystallite morphology of nylon-6/layered silicate nanocomposites, Polymer, 42, 2001, 1621.
- [21] Hanna A.A., Thermal and dielectric properties of nylon 6, Thermochimica Acta, 76, 1984, 97–103.
- [22] Wu Q., Liu X., Berglund L.A., FT-IR spectroscopic study of hydrogen bonding in PA6/clay nanocomposites, Polymer 43(8), 2002, 2445–2449.
- [23] Katoh Y., Okamoto M., Crystallization controlled by layered silicates in nylon 6–clay nanocomposite, Polymer, 50, 2009, 4718–4720.
- [24] Kaczmarek H., Bajer K., Metody badania biodegradacji materiałów polimerowych, Polimery, 51(10), 2006, 13–18.
- [25] Foltynowicz Z., Jakubiak P., Poli(kwas mlekowy) – biodegradowalny polimer otrzymywany z surowców roślinnych, Polimery, 47, 2002, 11–12.
- [26] Pielichowski K., Majka T.M., Leszczyńska A., Giacomelli M., Optimization and Scaling up of the Fabrication Process of Polymer Nanocomposites: Polyamide 6/Montmorillonite Case Study; Springer-Verlag Berlin Heidelberg, in. Niuguna J. (Ed) Structural Nanocomposites, 2013, 75–103.
- [27] Majka T.M., Bartyzel O., Raftopoulos K.N., Pagacz J., Leszczyńska A., Pielichowski K., Recycling of polypropylene/montmorillonite nanocomposites by pyrolysis, Journal of Analytical and Applied Pyrolysis, 119, 2016, 1–7.
- [28] Majka T.M., Leszczyńska A., Kandola B.K., Pornwannachai W., Pielichowski K., Modification of organo-montmorillonite with disodium H-phosphonate to develop flame retarded polyamide 6 nanocomposites, Applied Clay Science, 139, 2017, 28–39.
- [29] Majka T.M., Pielichowski K., Leszczyńska A., Wpływ chłonności płynów eksploatacyjnych stosowanych w motoryzacji przez kompozyty PA-6/MMT na ich właściwości mechaniczne, Czasopismo Techniczne, 9-M/2012, 147–154.
Uwagi
EN
The research (work) was supported by the European Union through the European Social Fund within “Cracow
University of Technology development programme – top quality teaching for prospective Polish engineers; University of
the 21st century” project (contract no.UDA-POKL.04.01.01-00-029/10-00).
University of Technology development programme – top quality teaching for prospective Polish engineers; University of
the 21st century” project (contract no.UDA-POKL.04.01.01-00-029/10-00).
EN
Section "Chemistry"
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4c752baf-04ac-4cde-9d06-c29956cc2d10