Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 21, no. 1 | 196--218
Tytuł artykułu

Influence of gradient structure on wear characteristics of centrifugally cast functionally graded magnesium matrix composites for automotive applications

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the past few years, the functionally graded materials (FGMs) have proved useful in many industrial applications such as aerospace, automotive, transportation and infrastructure because of their advantages like the ability to control mechanical properties, residual stresses, wear, and corrosion behavior through a smooth gradation of the elements in a particular direction of the products. In this current work, the microstructural and wear properties of AZ91 alloy reinforced with silicon carbide particles (SiCp) produced through the centrifugal casting method were investigated. Four weight fractions of SiCp with 10 µm average size were used to fabricate functionally graded (FG) tubes in the two mold rotational speeds of 1200 and 1500 rpm. Microstructural, microhardness, and wear tests were used for characterizing the developed FG tubes. From the results obtained, the gradient distribution of SiC particles inside the AZ91 matrix alloy substantially improved hardness and wear resistance for the FG tubes comparing to unreinforced alloy. Moreover, the mold rotational speed is the main factor in controlling the distribution of particles, thus determining the gradient properties of the manufactured FG tubes. These findings suggest that FG tubes are useful for aerospace and automotive applications that require more excellent surface resistance.
Wydawca

Rocznik
Strony
196--218
Opis fizyczny
Bibliogr. 34 poz., rys., wykr.
Twórcy
  • College of Mechanics and Materials, Hohai University, Nanjing 211100, China, bassiouny.saleh@alexu.edu.eg
  • Production Engineering Department, Alexandria University, Alexandria 21544, Egypt
autor
  • College of Mechanics and Materials, Hohai University, Nanjing 211100, China
autor
  • College of Mechanics and Materials, Hohai University, Nanjing 211100, China
autor
  • College of Mechanics and Materials, Hohai University, Nanjing 211100, China
autor
  • College of Mechanics and Materials, Hohai University, Nanjing 211100, China
  • Suqian Institute, Hohai University, Suqian 223800, China
Bibliografia
  • [1] Saleh B, et al. 30 Years of functionally graded materials: an overview of manufacturing methods, applications and future challenges. Compos Part B Eng. 2020;201:1–46. https://doi.org/10.1016/j.compositesb.2020.108376.
  • [2] Saleh B, Jiang J, Ma A, Song D, Yang D H. Effect of main parameters on the mechanical and wear behaviour of functionally graded materials by centrifugal casting: a review. Met Mater Int. 2019;25(6):1395–409. https://doi.org/10.1007/s12540 019 00273 8.
  • [3] Wang L S, Jiang J H, Saleh B, Xie Q Y, Qiong X, Liu H, Ma A B. Controlling corrosion resistance of a biodegradable Mg–Y–Zn alloy with LPSO phases via multipass ECAP process. Acta Metall Sin Eng Lett. 2020. https://doi.org/10.1007/s40195 020 01042 y.
  • [4] Xu Q, et al. Enhancement of mechanical properties and rolling formability in AZ91 alloy by RD ECAP processing. Mater (Basel). 2019;12(21):3503. https://doi.org/10.3390/ma12213503.
  • [5] Saleh B, et al. Statistical analysis of dry sliding wear process parameters for AZ91 alloy processed by RD ECAP using response surface methodology. Met Mater Int. 2020. https://doi.org/10.1007/s12540 020 00624 w.
  • [6] Xu Q, et al. Dry sliding wear behavior of AZ91 alloy processed by rotarydie equal channel angular pressing. J Mater Eng Perform. 2020. https://doi.org/10.1007/s11665 020 04883 x.
  • [7] Saleh B, Jiang J, Fathi R, Xu Q, Wang L, Ma A. Study of the microstructure and mechanical characteristics of AZ91–SiCp composites fabricated by stir casting. Arch Civ Mech Eng. 2020. https://doi.org/10.1007/s43452 020 00071 9.
  • [8] Qiong X, Ma A, Saleh B, Li Y, Yuan Y, Jiang J, Ni C. Enhancement of strength and ductility of SiCp/AZ91 composites by RD ECAP processing. Mater Sci Eng A. 2019. https://doi.org/10.1016/j.msea.2019.138579.
  • [9] El Galy IM, Saleh BI, Ahmed MH. Functionally graded materials classifications and development trends from industrial point of view. SN Appl Sci. 2019;1(11):1378–401. https://doi.org/10.1007/s42452 019 1413 4.
  • [10] Kieback B, Neubrand A, Riedel H. Processing techniques for functionally graded materials. Mater Sci Eng A. 2003;362:81–105. https://doi.org/10.1016/S0921 5093(03)00578 1.
  • [11] Zhang C, et al. Additive manufacturing of functionally graded materials: a review. Mater Sci Eng A. 2019;764:9. https://doi.org/10.1016/j.msea.2019.138209.
  • [12] Chirita G, Soares D, Silva FS. Advantages of the centrifugal casting technique for the production of structural components with Al Si alloys. Mater Des. 2008;29(1):20–7. https://doi.org/10.1016/j.matdes.2006.12.011.
  • [13] Rahimipour MR, Sobhani M. Evaluation of centrifugal casting process parameters for in situ fabricated functionally gradient Fe TiC composite. Metall Mater Trans B. 2013;44B:1120–3. https://doi.org/10.1007/s11663 013 9903 z.
  • [14] Watanabe Y, Sato R, Kim I, Miura S, Miura H. Functionally graded material fabricated by a centrifugal method from ZK60A magnesium alloy. Mater Trans. 2005;46(5):944–9.
  • [15] Saleh B, Jiang J, Ma A, Song D, Yang D, Xu Q. Review on the influence of different reinforcements on the microstructure and wear behavior of functionally graded aluminum matrix composites by centrifugal casting. Met Mater Int. 2020;26(7):933–60. https://doi.org/10.1007/s12540 019 00491 0.
  • [16] Vieira AC, Sequeira PD, Gomes JR, Rocha LA. Dry sliding wear of Al alloy/SiCp functionally graded composites: influence of processing conditions. Wear. 2009;267:585–92. https://doi.org/10.1016/j.wear.2009.01.041.
  • [17] Prabhu TR. Processing and properties evaluation of functionally continuous graded 7075 Al alloy/SiC composites. Arch Civ Mech Eng. 2017;17(1):20–31. https://doi.org/10.1016/j.acme.2016.08.004.
  • [18] EL Galy IM, Bassiouny BI, Ahmed MH. Characterization of functionally graded Al SiCp metal matrix composites manufactured by centrifugal casting. Alexandria Eng J. 2017;56(4):371–81. https://doi.org/10.1016/j.aej.2017.03.009.
  • [19] EL Galy IM, Bassiouny BI, Ahmed MH. empirical model for dry sliding wear behaviour of centrifugally cast functionally graded Al/SiCp composite. Key Eng Mater. 2018;786:276–85. https://doi.org/10.4028/www.scientific.net/KEM.786.276.
  • [20] Saleh BI, Ahmed MH. Development of functionally graded tubes based on pure Al/Al2O3 metal matrix composites manufactured by centrifugal casting for automotive applications. Met Mater Int. 2020;26(9):1430–40. https://doi.org/10.1007/s12540 019 00391 3.
  • [21] Rao AG, Mohape M, Katkar VA, Gowtam DS, Deshmukh VP, Shah AK. Fabrication and characterization of aluminum (6061) boron carbide functionally gradient material. Mater Manuf Process. 2014. https://doi.org/10.1080/10426910903180037 (no. December 2014).
  • [22] Ramkumar KR, Sivasankaran S, Al Mufadi FA, Siddharth S, Raghu R. Investigations on microstructure, mechanical, and tribological behaviour of AA 7075–x wt.% TiC composites for aerospace applications. Arch Civ Mech Eng. 2019;19(2):428–38. https://doi.org/10.1016/j.acme.2018.12.003.
  • [23] Junus S, Zulfia A. Development of seamless pipe based on Al/Al2O3 composite produced by stir casting and centrifugal cast ing. Mater Sci Forum. 2016;857:179–82. https://doi.org/10.4028/www.scientific.net/MSF.857.179.
  • [24] Fathi R, Ma A, Saleh B, Xu Q, Jiang J. Investigation on mechanical properties and wear performance of functionally graded AZ91 SiCp composites via centrifugal casting. Mater Today Commun. 2020. https://doi.org/10.1016/j.mtcomm.2020.101169.
  • [25] Yu W, et al. Microstructure, mechanical properties and fracture mechanism of Ti2AlC reinforced AZ91D composites fabricated by stir casting. J Alloys Compd. 2017;702:199–208. https://doi.org/10.1016/j.jallcom.2017.01.231.
  • [26] Asgari A, Sedighi M, Krajnik P. Magnesium alloy silicon carbide composite fabrication using chips waste. J Clean Prod. 2019;232:1187–94. https://doi.org/10.1016/j.jclepro.2019.06.018.
  • [27] Rajan TPD, Pillai RM, Pai BC. Characterization of centrifugal cast functionally graded aluminum silicon carbide metal matrix composites. Mater Charact. 2010;61(10):923–8. https://doi.org/10.1016/j.matchar.2010.06.002.
  • [28] Poddar P, Srivastava VC, De PK, Sahoo KL. Processing and mechanical properties of SiC reinforced cast magnesium matrix composites by stir casting process. Mater Sci Eng A. 2007;460–461:357–64. https://doi.org/10.1016/j.msea.2007.01.052.
  • [29] Huang SJ, Chen ZW. Grain refinement of AlNp/AZ91D magnesium metal matrix composites. Kov Mater. 2011;49(4):259–64. https://doi.org/10.4149/km2011.42.59.
  • [30] Karun AS, Rajan TPD, Pillai UTS, Pai BC, Rajeev VR. Enhancement in tribological behaviour of functionally graded SiC reinforced aluminium composites by centrifugal casting. J Compos Mater. 2016;50:2255–69. https://doi.org/10.1177/0021998315602946.
  • [31] García Rodríguez S, Torres B, Maroto A, López AJ, Otero E, Rams J. Dry sliding wear behavior of globular AZ91 magnesium alloy and AZ91/SiCp composites. Wear. 2017;390–391:1–10. https://doi.org/10.1016/j.wear.2017.06.010.
  • [32] Kumar KKA, Viswanath A, Rajan TPD, Pillai UTS, Pai BC. Physical, mechanical, and tribological attributes of stircast AZ91/SiCp composite. Acta Met Sin (Engl Lett). 2014;27(2):295–305. https://doi.org/10.1007/s40195 014 0045 3.
  • [33] Xiao P, et al. Tribological behavior of in situ nanosized TiB2 particles reinforced AZ91 matrix composite. Tribol Int. 2018;128:130–9. https://doi.org/10.1016/j.triboint.2018.07.003.
  • [34] Li J, et al. Tribological behavior of TiC particles reinforced 316Lss composite fabricated using selective laser melting. Mater (Basel). 2019;12(6):1–16. https://doi.org/10.3390/ma12060950.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4c64a058-c70d-40e6-aad1-0a07e15f6ef3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.