Warianty tytułu
Języki publikacji
Abstrakty
The complex Bloch varieties and the associated Fermi curves of two-dimensional periodic Schrödinger operators with quasi-periodic boundary conditions are defined as complex analytic varieties, the Schrödinger potentials being from the Lorentz–Fourier space Fℓ∞,1. Then, an asymptotic analysis of the Fermi curves is performed. The decomposition of a Fermi curve into a compact part, an asymptotically free part, and thin handles, is recovered as expected. Furthermore, it is shown that the set of potentials whose associated Fermi curve has finite geometric genus is a dense subset of Fℓ∞,1. Moreover, the Fourier transforms of the potentials are locally isomorphic to perturbed Fourier transforms induced by the handles. Finally, an asymptotic family of parameters describing the sizes of the handles is introduced. These parameters are good candidates for describing parts of the space of all Fermi curves.
Czasopismo
Rocznik
Tom
Strony
55--76
Opis fizyczny
Bibliogr. 8 poz.
Twórcy
autor
- Fraunhofer-Institut für Techno- und Wirtschaftsmathematik, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany, Alexander.Klauer@itwm.fraunhofer.de
Bibliografia
- [1] N. Aronszaijn and K. T. Smith, Theory of Bessel potentials. I, Ann. Inst. Fourier (Grenoble) 11 (1961), 385-475.
- [2] C. Bennett and R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129, Academic Press, Boston, 1988.
- [3] A. Defant and K. Floret, Tensor Norms and Operator Ideals, Math. Stud. 176, North-Holland, Amsterdam, 1993.
- [4] J. Feldman, H. Kni:irrer and E. Trubowitz, Riemann Surfaces of Infinite Genus, Centre Rech. Math. Univ. Montreal Monogr. Ser. 20, American Mathematical Society, Providence, 2003.
- [5] A. Klauer, On complex Fermi curves of two-dimensional periodic Schrodinger operators, doctoral dissertation thesis, University of Mannheim, 2011, http://madoc.bib.uni-mannheim.de/madoc/volltexte/2011/3171/.
- [6] A. Klauer and M. U. Schmidt, Bloch varieties of higher-dimensional, periodic Schrödinger operators, J. Appl. Anal. 15 (2009), 33-46.
- [7] A. Klauer and M. U. Schmidt, Erratum to: Bloch varieties of higher-dimensional, periodic Schrödinger operators [J. Appl. Anal. 15 (2009), 33-46], J. Appl. Anal. 20 (2013), 305-306.
- [8] M. U. Schmidt, On complex Bloch-spaces of periodic Schrödinger operators, Sfb 288 Preprint no. 200, preprint (1996), http://www-sfb288.math.tu-berlin.de/Publications/preprint-list/151/200.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4c55a2ac-9941-47f3-9703-9b81cf89a5b2