Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2019 | Vol. 67, no. 2 | 465--476
Tytuł artykułu

Forecasting seismic activity rates in northwest Himalaya through multivariate autoregressive forecast of seismicity algorithm

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, a model based on multivariate autoregressive forecast of seismicity (MARFS) algorithm is adopted to forecast seismic activity rates in northwest Himalaya, using the compiled homogenized moment magnitude (MW) based catalogue. For this purpose, each source zone delineated by Yadav et al. (Pure Appl Geophys 170:283–295, 2012) is divided into a spatial grid interval of 0.5° × 0.5° while the entire catalogue span (1975–2010) is segregated into six time periods/grids to estimate seismic activity rates spatially and temporally. These seismic activity rates which are estimated from spatial density map of hypocenters exhibit high values in Chaman Fault (Zone 1), Hindukush-Pamir region (Zone 3) and the mega thrust systems, i.e., Main Central Thrust, Main Boundary Thrust and Himalayan Frontal Thrust (Zone 4). Then, the seismic activity rates during 2011–2016 could be forecasted by extrapolating (through auto-regression procedure) those observed for previous time periods. The forecast seismic activity rates are estimated within the values of 0 and 7.57 with high values primarily observed in Hindukush-Pamir region of Zone 3 and the gently north-dipping thrust fault systems (Main Central Thrust, Main Boundary Thrust, Himalayan Frontal Thrust) of Zone 4. Finally, the associated area under the curve of receiver operating characteristics graph suggests the superiority of forecasting model with respect to random prediction, whereas results of the data-consistency test, i.e., N test of our model, exhibit consistency in between the observed and simulated likelihoods. Moreover, the hypothetical t test performed in between the spatial grids of forecast seismic activity rates and observed seismic activity rates confirms that the former is consistent with the latter.
Wydawca

Czasopismo
Rocznik
Strony
465--476
Opis fizyczny
Bibliogr. 70 poz.
Twórcy
  • National Center for Seismology, Ministry of Earth Sciences, New Delhi 110003, India
  • Geological Survey of India, Kolkata 700016, India
Bibliografia
  • 1. Akaike H (1974) New look at statistical-model identification. IEEE Trans Autom Control 19:716–723
  • 2. Ambraseys NN, Bilham R (2003) Earthquakes and crustal deformation in northern Baluchistan 1892–2001. Bull Seismol Soc Am 93(4):1573–1600
  • 3. Armbruster J, Seeber L, Jacob KH (1978) The northern termination of the Himalayan mountain front: active tectonics from microearthquakes. J Geophys Res 83(B1):269–282
  • 4. Arora BR, Gahalaut VK, Kumar N (2012) Structural control on along-strike variation in the seismicity of the Northwest Himalaya. J Asian Earth Sci 57:15–24
  • 5. Bernard M, Shen-Tu B, Holt WE, Davis DM (2000) Kinematics of active deformation in the Sulaiman Lobe and Range Pakistan. J Geophys Res 105:13253
  • 6. Bhatia SC, Kumar MR, Gupta HK (1999) A probabilistic hazard map of India and adjoining regions. Ann Geofis 42:1153–1164
  • 7. Bilham R, Gaur VK (2000) Geodetic contributions to the study of seismotectonics in India. Curr Sci 79:1259–1269
  • 8. Bilham R, Larson K, Freymueller J, Idylhim P (1997) GPS measurements of present-day convergence across the Nepal Himalaya. Nature 386:61–64
  • 9. Bird P, Zhen L (2007) Seismic hazard inferred from tectonics: California. Seismol Res Lett 78(1):37–48
  • 10. BIS (2002) Is 1893 (part 1)—2002: Indian standard criteria for earthquake resistant design of structures, part 1—general provisions and buildings. Bur Indian Stand, NewDelhi
  • 11. Bormann P, Liu R, Ren X, Gutdeutsch R, Kaiser D, Castellaro S (2007) Chinese national network magnitudes, their relation to NEIC magnitudes, and recommendations for new IASPEI magnitude standards. Bull Seismol Soc Am 97:114–127
  • 12. Burtman V, Molnar P (1993) Geological and geophysical evidence for deep subduction of continental crust beneath the Pamir. Geol Soc Am Spec Paper 281. https://doi.org/10.1130/SPE281-p1
  • 13. Chandra U (1978) Seismicity, earthquake mechanisms and tectonics along the Himalayan mountain range and vicinity. Phys Earth Planet Inter 16:109–131
  • 14. Chatelain JL, Roeker SW, Hatzfeld D, Molnar P (1980) Microearthquake seismicity and fault plane solutions in the Hindukush region and their tectonic implications. J Geophys Res 85:1365–1387
  • 15. Chatfield C (2004) The analysis of time series. Chapman and Hall, Boca Raton, Florida
  • 16. Chingtham P, Chopra S, Baskoutas I, Bansal BK (2014) An assessment of seismicity parameters in northwest Himalaya and adjoining regions. Nat Hazards 71:1599–
  • 17. Chingtham P, Yadav RBS, Chopra S, Yadav AK, Gupta AK, Roy PNS (2015) Time-dependent seismicity analysis in the northwest Himalaya and its adjoining regions. Nat Hazards 80(30):1783–1800. https://doi.org/10.1007/s11069-015-2031-0
  • 18. Chingtham P, Sharma B, Chopra S, Roy PNS (2016) Statistical analysis of aftershock sequences related with two major Nepal earthquakes: April 25, 2015, MW 7.8, and May 12, 2015, MW 7.2. Ann Geophys 59(5):S0540. https://doi.org/10.4401/ag-7025
  • 19. Chingtham P, Prajapati SK, Gahalaut VK, Chopra S, Roy PNS (2017) Forecasting seismicity rate in the north-west Himalaya using rate and state dependent friction law. Geomat Nat Haz Risk 8(2):1643–1661. https://doi.org/10.1080/19475705.2017.1369168
  • 20. Console R, Murru M (2001) A simple and testable model for earthquake clustering. J Geophys Res 106:8699–8711
  • 21. Console R, Murru M, Catalli F (2006) Physical and stochastic models of earthquake clustering. Tectonophysics 417(1–2):141–153
  • 22. DeMets C, Gordon RG, Argus DF, Stein S (1994) Effect of recent revisions to the geomagnetic reversal timescale on estimates of current plate motions. Geophys Res Lett 21:2191–2194
  • 23. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via algorithm. J Roy Stat Soc Ser B (Stat Methodol) 1:1–38
  • 24. Everitt BS (1993) Cluster analysis. Edward Arnold, London
  • 25. Fan G, Ni JF, Wallace TC (1994) Active tectonics of the Pamir and the Karakoram. J Geophys Res 99:7131–7160
  • 26. Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27:861–874
  • 27. Field EH (2007) Overview of the working group for the development of regional earthquake likelihood models (RELM). Seismol Res Lett 78(1):7–16
  • 28. Gansser A (1964) Geology of the Himalayas. Inter-Science, London
  • 29. Gardner JK, Knopoff L (1974) Is the sequence of earthquakes in southern California with aftershocks removed, Poissonian? Bull Seismol Soc Am 64:1363–1367
  • 30. Gerstenberger MC, Rhoades DA (2010) New Zealand earthquake forecast testing centre. Pure appl Geophys 167:877–892. https://doi.org/10.1007/s00024-010-0082-4
  • 31. Gupta HK, Gahalaut VK (2014) Seismotectonics and large earthquake generation in the Himalayan region. Gondwana Res 25(1):204–213
  • 32. Helmstetter A, Kagan YY, Jackson DD (2007) High-resolution time-independent grid-based forecast for M > 5 earthquakes in California. Seismol Res Lett 78:78–86
  • 33. International Commission on Earthquake Forecasting for Civil Protection (2009) Operational earthquake forecasting: state of knowledge and guidelines for utilization released by the Dipartimento Della Protezione Civile, Rome, Italy, 2 Oct 2009
  • 34. Jackson DD, Kagan YY (1999) Testable earthquake forecasts for 1999. Seismol Res Lett 70:393–403
  • 35. Kagan YY, Rong YF, Jackson DD (2003) Probabilistic forecasting of seismicity. In: Mulargia F, Geller RJ (eds) Earthquake science and seismic risk reduction. Kluwer Academic Publishing, Dordrecht, pp 185–200
  • 36. Knopoff L (2000) The magnitude distribution of declustered earthquakes in southern California. Proc Natl Acad Sci USA 97(22):11880–11884. https://doi.org/10.1073/pnas.190241297
  • 37. Koulakov I, Sobolev S (2006) A tomographic image of Indian lithosphere break-off beneath the Pamir–Hindukush region. Geophys J Int 164:425–440
  • 38. Loannis B, George P, Chingtham P, Bansal BK (2011) Temporal variation of seismic parameters in the western part of the India-Eurasia plate collision zone. Res Geophys 1(e3):8–12
  • 39. Lyon-Caen H, Molnar P (1983) Constraints on the structure of the Himalaya from an analysis of gravity anomalies and a flexural model of the lithosphere. J Geophys Res 88:8171–8192
  • 40. Marzocchi W, Lombardi AM (2009) Real-time forecasting following a damaging earthquake. Geophys Res Lett 36:L21302. https://doi.org/10.1029/2009GL040233
  • 41. Marzocchi W, Zechar JD (2011) Earthquake forecasting and earthquake prediction: different approaches for obtaining the best model. Seismol Res Lett 82:442–448
  • 42. Marzocchi W, Amato A, Akinci A, Chiarabba C, Lombardi AM, Pantosti D, Boschi E (2012) A ten-year earthquake occurrence model for Italy. Bull Seismol Soc Am 102:1195–1213
  • 43. McLachlan G, Ng S (2009) The EM algorithm. In: Wu X, Kumar V (eds) The top-ten algorithms in data mining. Chapman and Hall/CRC, Boca Raton, pp 93–115
  • 44. Murru M, Console R, Falcone G (2009) Real time earthquake forecasting in Italy. Tectonophysics 470:214–223
  • 45. Nishenko SP, Singh SK (1987) Conditional probabilities for the recurrence of large and great interplate earthquakes along the Mexican subduction zone Bull Seismol Soc Am 77:2094–2114
  • 46. Ogata Y (1998) Space-time point-process models for earthquake occurrences. Ann Inst Stat Math 50(2):379–402
  • 47. Philip G, Suresh N, Bhakuni SS (2014) Active tectonics in the northwestern outer Himalaya: evidence of large-magnitude palaeoearthquakes in Pinjaur Dun and the frontal Himalaya. Curr Sci 106:211–222
  • 48. Rhoades DA (2007) Application of the EEPAS model to forecasting earthquakes of moderate magnitude in southern California. Seism Res Lett 78(1):110–115
  • 49. Rhoades DA, Evison FF (2004) Long-range earthquake forecasting with every earthquake a precursor according to scale. Pure appl Geophys 161:47–71
  • 50. Rhoades DA, Evison FF (2005) Test of the EEPAS forecasting model on the Japan earthquake catalogue. Pure appl Geophys 162:1271–1290
  • 51. Rhoades DA, Evison FF (2006) The EEPAS forecasting model and the probability of moderate-to-large earthquakes in central Japan. Tectonophysics 417:119–130
  • 52. Rhoades DA, Schorlemmer D, Gerstenberger MC, Christophersen A, Zechar JD, Imoto M (2011) Efficient testing of earthquake forecasting models. Acta Geophys 59:728–747. https://doi.org/10.2478/s11600-011-0013-5
  • 53. Robinson D, Dhu T, Schneider J (2006) SUA: a computer program to compute regolith site-response and estimate uncertainty for probabilistic seismic hazard analyses. Comput Geosci 32:109–123
  • 54. Rout MM, Das J, Kamal Das R (2015) Probabilistic seismic hazard assessment of NW and central Himalayas and the adjoining region. J Earth Syst Sci 124(3):577–586
  • 55. Scholz CH, Small C (1997) The effect of seamount subduction on seismic coupling. Geology 25:487–490
  • 56. Schorlemmer D, Gerstenberger MC (2007) RELM testing center. Seismol Res Lett 78:30–36
  • 57. Schorlemmer D, Wiemer S, Wyss M (2005) Variations in earthquake-size distribution across different stress regimes. Nature 437(22):539–542
  • 58. Schorlemmer D, Christophersen A, Rovida A, Mele F, Stucchi M, Marzocchi W (2010) Setting up an earthquake forecast experiment in Italy. Ann Geophys Italy 53:1–9
  • 59. Seeber L, Armbruster JG (1984) Some elements of continental subduction along the Himalayan front. Tectonophysics 105:263–278
  • 60. Shen ZK, Jackson DD, Kagan YY (2007) Implications of geodetic strain rate for future earthquakes, with a five-year forecast of M 5 earthquakes in southern California. Seismol Res Lett 78:116–120
  • 61. Smyth C, Mori J (2011) Statistical models for temporal variations of seismicity parameters to forecast seismicity rates in Japan. Earth, Planets Space 63:231–238
  • 62. Snedecor GW, William CG (1989) Statistical methods, 8th edn. Lowa State University Press, Ames
  • 63. Thingbaijam KKS, Nath SK, Yadav A (2008) Recent seismicity in northeast India and its adjoining region. J Seismol 12:107–123
  • 64. Thingbaijam KKS, Chingtham P, Nath SK (2009) Seismicity in the north-west frontier province at the Indian-Eurasian Plate Convergence. Seismol Res Lett 80:599–608
  • 65. Toda S, Enescu B (2011) Rate/state Coulomb stress transfer model for the CSEP Japan seismicity forecast. Earth Planets Space 63:171–185
  • 66. Valdiya KS (2003) Reactivation of Himalayan frontal fault: implication. Curr Sci 85(7):1031–1040
  • 67. Wessel P, Smith WHF (1998) New improved version of generic mapping tools released. EOS Trans Am Geophys Union 79:579
  • 68. Yadav RBS, Bayrak Y, Tripathi JN, Chopra S, Singh AP, Bayrak E (2011) A probabilistic assessment of earthquake hazard parameters in NW Himalaya and the adjoining regions. Pure appl Geophys 169:1619–1639
  • 69. Yadav RBS, Tsapanos TM, Bayrak Y, Koravos GCH (2012) Probabilistic appraisal of earthquake hazard parameters deduced from a Bayesian approach in the northwest frontier of the Himalayas. Pure appl Geophys 170:283–295
  • 70. Zechar JD, Gerstenberger MC, Rhoades DA (2010) A Likelihood based tests for evaluating space-rate magnitude earthquake forecasts. Bull Seismol Soc Am 100:1184–1195
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4c26647e-3db8-40c9-b243-1775fcc166c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.