Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2016 | Vol. 64, no. 4 | 1193--1210
Tytuł artykułu

Correction of Hydrological and Oceanic Effects from GRACE Data by Combination of the Steric Sea Level, Altimetry Data and GLDAS Model

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, a scheme to estimate oceanic and hydrological effects in the GRACE (Gravity Recovery and Climate Experiment) data is presented. The aim is to reveal tectonic signals for the case of the Sumatra earthquake on 26 December 2004. The variations of hydrological and oceanic effects are estimated with the aid of data set of GRACE, altimetry, World Ocean Atlas, and the GLDAS model for a period of January 2003 to December 2006. The time series of computed gravity changes over Sumatra region show some correlations to the deformation resulting from the earthquake occurred in December 2004. The maximum and minimum impacts of hydrological and oceanic effects on gravity changes are about 3 μGal in radial direction and –5 μGal in northward direction. The maximum and minimum amounts of gravitational gradient changes after the correction are 0.2 and –0.25 mE, which indicates the significant influences of hydrological and oceanic sources on the desired signal.
Słowa kluczowe
Wydawca

Czasopismo
Rocznik
Strony
1193--1210
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
  • Faculty of Geodesy and Geomatics Engineering, K.N. Toosi University of Technology, Tehran, Iran, vosoghi@kntu.ac.ir
  • Faculty of Geodesy and Geomatics Engineering, K.N. Toosi University of Technology, Tehran, Iran, mraoofian@kntu.ac.ir
Bibliografia
  • Agnew, D.C. (2007), Earth tides. In: T.A. Herring (ed.), Treatise on Geophysics: Geodesy, Elsevier, New York, 163-195.
  • Bao, L.F., A. Piatanesi, Y. Lu, H.T. Hsu, and X.H. Zhou (2005), Sumatra tsunami affects observations by GRACE satellites, Eos Trans. AGU 86, 39, 353- 356, DOI: 10.1029/2005EO390002.
  • Chambers, D.P. (2006a), Evaluation of new GRACE time-variable gravity data over the ocean, Geophys. Res. Lett. 33, 17, L17603, DOI: 10.1029/2006GL 027296.
  • Chambers, D.P. (2006b), Observing seasonal steric sea level variations with GRACE and satellite altimetry, J. Geophys. Res. 111, C3, C03010, DOI: 10.1029/2005JC002914.
  • Chen, J.L., C.R. Wilson, B.D. Tapley, and S. Grand (2007), GRACE detects coseismic and postseismic deformation from the Sumatra–Andaman earthquake, Geophys. Res. Lett. 34, 13, L13302, DOI: 10.1029/2007GL030356.
  • Creutzfeldt, B., A. Güntner, H. Wziontek, and B. Merz (2010), Reducing local hydrology from high-precision gravity measurements: a lysimeter-based approach, Geophys. J. Int. 183, 1, 178-187, DOI: 10.1111/j.1365-246X.2010. 04742.x.
  • Ducet, N., P.Y. Le Traon, and G. Reverdin (2000), Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2, J. Geophys. Res. 105, C8, 19477-19498, DOI: 10.1029/2000JC900063.
  • Elsaka, B. (2014), Sub-monthly gravity field recovery from simulated multiGRACE mission type, Acta Geophys. 62, 1, 241-258, DOI: 10.2478/ s11600-013-0170-9.
  • Eshagh, M. (2010), Alternative expressions for gravity gradients in local northoriented frame and tensor spherical harmonics, Acta Geophys. 58, 2, 215- 243, DOI: 10.2478/s11600-009-0048-z.
  • Eshagh, M., and M. Abdollahzadeh (2010), Semi-vectorization: an efficient technique for synthesis and analysis of gravity gradiometry data, Earth Sci. Inform. 3, 3, 149-158, DOI: 10.1007/s12145-010-0062-3.
  • Eshagh, M., and M. Abdollahzadeh (2012), Software for generating gravity gradients using a geopotential model based on an irregular semivectorization algorithm, Comput. Geosci. 39, 152-160, DOI: 10.1016/j.cageo.2011.06.003.
  • Eshagh, M., J.-M. Lemoine, P. Gegout, and R. Biancale (2013), On regularized time varying gravity field models based on GRACE data and their comparison with hydrological models, Acta Geophys. 61, 1, 1-17, DOI: 10.2478/ s11600-012-0053-5.
  • Fatolazadeh, F., B. Voosoghi, and M. Raoofian Naeeni (2016), Wavelet and Gaussian approaches for estimation of groundwater variations using GRACE data, Ground Water 54, 1, 74-81, DOI: 10.1011/gwat.12325.
  • Feng, G., and S. Jin (2012), Global water cycle and climate change signals observed by satellite gravimetry. In: 2012 IEEE Int. Geoscience and Remote Sensing Symposium (IGARSS), 22-27 July 2012, Munich, Germany, 832-835, DOI: 10.1109/IGARSS.2012.6351432.
  • Flechtner, F. (2007), GRACE 327-750 (GR-GFZ-AOD-0001). AOD1B product description document for product releases 01 to 04, Rev. 3.1, Gravity Recovery and Climate Experiment, GeoForschungszentrum, Potsdam, Germany.
  • Han, S.-C., R. Riva, J. Sauber, and E. Okal (2013), Source parameter inversion for recent great earthquakes from a decade-long observation of global gravity fields, J. Geophys. Res. 118, 3, 1240-1267, DOI: 10.1002/jgrb.50116.
  • Heiskanen, W.A., and H. Moritz (1967), Physical Geodesy, W.H. Freeman, San Francisco.
  • Ishii, M., M. Kimoto, K. Sakamoto, and S.I. Iwasaki (2006), Steric sea level changes estimated from historical ocean subsurface temperature and salinity analyses, J. Oceanogr. 62, 2, 155-170, DOI: 10.1007/s10872-006-0041-y.
  • Jayne, S.R., J.M. Wahr, and F.O. Bryan (2003), Observing ocean heat content using satellite gravity and altimetry, J. Geophys. Res. 108, C2, 3031, DOI: 10.1029/2002JC001619.
  • Jin, S.G., AA.. Hassan, and G.P. Feng (2012), Assessment of terrestrial water contributions to polar motion from GRACE and hydrological models, J. Geodyn. 62, 40-48, DOI: 10.1016/j.jog.2012.01.009.
  • Lombard, A., D. Garcia, G. Ramillien, A. Cazenave, R. Biancale, J.M. Lemoine, F. Flechtner, R. Schmidt, and M. Ishii (2007), Estimation of steric sea level variations from combined GRACE and Jason-1 data, Earth Planet. Sci. Lett. 254, 1-2, 194-202, DOI: 10.1016/j.epsl.2006.11.035.
  • Lorenz, C., H. Kunstmann, B. Devaraju, M.J. Tourian, N. Sneeuw, and J. Riegger (2014), Large-scale runoff from landmasses: a global assessment of the closure of the hydrological and atmospheric water balances, J. Hydrometeorol. 15, 6, 2111-2139, DOI: 10.1175/JHM-D-13-0157.1.
  • Luthcke, S.B., H.J. Zwally, W. Abdalati, D.D. Rowlands, R.D. Ray, R.S. Nerem, F.G., Lemoine, J.J. McCarthy, and D.S. Chinn (2006), Recent Greenland ice mass loss by drainage system from satellite gravimetry observations, Science 314, 5803, 1286-1289, DOI: 10.1126/science.1130776.
  • Lyard, F., F. Lefevre, T. Letellier, and O. Francis (2006), Modelling the global ocean tides: modern insights from FES2004, Ocean Dynam. 56, 5-6, 394- 415, DOI: 10.1007/s10236-006-0086-x.
  • Rajner, M., T. Olszak, J. Rogowski, and J. Walo (2012), The Influence of continental water storage on gravity rates estimates: case study using absolute gravity measurements from area of Lower Silesia, Poland, Acta Geodyn Geomater. 9, 4, 168, 449-455.
  • Rodell, M., P.R. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C.J. Meng, K. Arsenault, B. Cosgrove, J. Radakovich, M. Bosilovich, J.K. Entin, J.P. Walker, D. Lohmann, and D. Toll (2004), The Global Land Data Assimilation System, Bull. Am. Meteorol. Soc. 85, 3, 381-394, DOI: 10.1175/ BAMS-85-3-381.
  • Sneeuw, N., C. Lorenz, B. Devaraju, M.J. Tourian, J. Riegger, H. Kunstmann, and A. Bárdossy (2014), Estimating runoff using hydro-geodetic approaches, Surv. Geophys. 35, 6, 1333-1359, DOI: 10.1007/s10712-014-9300-4.
  • Stephens, C., J.I. Antonov, T.P. Boyer, M.E. Conkright, R.A. Locarnini, T.D. O’Brien, and H.E. Garcia (2002), World Ocean Atlas 2001, Volume 1. Temperature, NOAA Atlas NESDIS 49, U.S. Gov. Print. Off., Washington, D.C.
  • Tapley, B.D., S. Bettadpur, M. Watkins, and C. Reigber (2004), The gravity recovery and climate experiment: Mission overview and early results, Geophys. Res. Lett. 31, 9, L09607, DOI: 10.1029/2004GL019920.
  • Tourian, M.J., O. Elmi, Q. Chen, B. Devaraju, S. Roohi, and N. Sneeuw (2015), A spaceborne multisensor approach to monitor the desiccation of Lake Urmia in Iran, Remote Sens. Environ. 156, 349-360, DOI: 10.1016/j.rse. 2014.10.006.
  • Tsoulis, D., and K. Patlakis (2014), Spectral assessment of isostatic gravity models against CHAMP, GRACE, GOCE satellite-only and combined gravity models, Acta Geophys. 62, 4, 679-698, DOI: 10.2478/s11600-013-0176-3.
  • Velicogna, I., and J. Wahr (2006), Measurements of time-variable gravity show mass loss in Antarctica, Science 311, 5768, 1754-1756, DOI: 10.1126/ science.1123785.
  • Wahr, J., M. Molenaar, and F. Bryan (1998), Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE, J. Geophys. Res. 103, B12, 30205-30230, DOI: 10.1029/ 98JB02844.
  • Wahr, J., S. Swenson, V. Zlotnicki, and I. Velicogna (2004), Time-variable gravity from GRACE: First results, Geophys. Res. Lett. 31, 11, L11501, DOI: 10.1029/2004GL019779.
  • Wang, L., C.K. Shum, and C. Jekeli (2012), Gravitational gradient changes following the 2004 December 26 Sumatra–Andaman earthquake inferred from GRACE, Geophys. J. Int. 191, 3, 1109-1118, DOI: 10.1111/j.1365- 246X.2012.05674.x.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na
działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4c162da0-f61c-426d-9704-07bf37afb114
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.