Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, nr 7 | 384--397
Tytuł artykułu

Optimal Design of a Hybrid Renewable Power System for a Reverse Osmosis Desalination Plant in Jordan

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this investigation is to assess the feasibility and benefits of integrating a renewable energy system into a seawater reverse osmosis (SWRO) desalination station in Aqaba, Jordan. It has been determined that the optimal SWRO system configuration produce 109,500.00 m3 daily fresh-water output with high rejection rates for various contaminants. The total water cost is 0.85 $/m3, with a specific energy consumption of 2.67 kWh/m3. Furthermore, the economic and environmental assessments of optimum design of the wind-diesel generator-battery. This conf iguration not only offers the lowest cost of energy but also demonstrates a substantial renewable fraction and significant reduction in CO2 emissions. These results underscore the feasibility and benefits of integrating renewable energy into desalination operations, contributing to both economic sustainability and environmental preservation.
Wydawca

Rocznik
Strony
384--397
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
  • Water and Environment Engineering Department, Al-Huson University College, Al-Balqa Applied University, P.O.B. 50, Irbid, Jordan, m_alodat@yahoo.com
  • Mechanical Engineering Department, Al-Huson University College, Al-Balqa Applied University, P.O.B. 50, Irbid, Jordan, m_alodat@yahoo.com
Bibliografia
  • 1. Al Omari, H. 2020. Water Management in Jordan and its Impact on Water Scarcity (Doctoral dissertation, Université d’Ottawa/University of Ottawa).
  • 2. Alfarra, A. 2019. Water-Energy-Food Nexus in the Arab Region. In Water, Sustainable Development and the Nexus, 74–98. CRC Press.
  • 3. Al-Qawabah, S.M., Al-Soud, M.S., Althneibat, A.K. 2021. Assessment of hybrid renewable energy systems to drive water desalination plant in an arid remote area in Jordan. International Journal of Green Energy, 18(5), 503–511.
  • 4. Al-Taani, A.A., Rashdan, M., Nazzal, Y., Howari, F., Iqbal, J., Al-Rawabdeh, A., Al Bsoul A., Khashashneh, S. 2020. Evaluation of the Gulf of Aqaba coastal water, Jordan. Water, 12(8), 2125.
  • 5. Borgomeo, E., Fawzi, N.A.M., Hall, J.W., Jägerskog, A., Nicol, A., Sadoff, C.W., Salman M., Santos N., Talhami, M. 2020. Tackling the trickle: ensuring sustainable water management in the Arab region. Earth’s Future, 8(5), e2020EF001495.
  • 6. Gökçek, M. 2018. Integration of hybrid power (wind-photovoltaic-diesel-battery) and seawater reverse osmosis systems for small-scale desalination applications. Desalination, 435, 210–220.
  • 7. Gomaa, M.R., Ala’a, K., Al-Dhaifallah, M., Rezk, H., Ahmed, M. 2023. Optimal design and economic analysis of a hybrid renewable energy system for powering and desalinating seawater. Energy Reports, 9, 2473–2493.
  • 8. HOMER help manual., (n.d.). http://www.homerenergy.com/pdf/ HOMERHelpManual.pdf.
  • 9. Aghababaei, N. 2017. Reverse osmosis design with IMS design software to produce drinking water in Bandar Abbas, Iran, Journal of Applied Research in Water and Wastewater, 4(1), 314–318.
  • 10. Qtaishat, T.H., Al-Karablieh, E.K., Al Adaileh, H., El-Habbab, M.S. 2022. Drought Management Policies and Institutional Mandate in Jordan. In Sustainable Energy-Water-Environment Nexus in Deserts: Proceeding of the First International Conference on Sustainable Energy-Water-Environment Nexus in Desert Climates, 757–763. Cham: Springer International Publishing.
  • 11. Rezk, H., Alghassab, M., Ziedan, H.A. 2020. An optimal sizing of stand-alone hybrid PV-fuel cellbattery to desalinate seawater at saudi NEOM city. Processes, 8(4), 382.
  • 12. Salameh, M.T.B., Alraggad, M., Harahsheh, S.T. 2021. The water crisis and the conflict in the Middle East. Sustainable Water Resources Management, 7, 1–14.
  • 13. Schunke, A.J., Hernandez Herrera, G.A., Padhye, L., Berry, T.A. 2020. Energy recovery in SWRO desalination: current status and new possibilities. Frontiers in Sustainable Cities, 2, 9.
  • 14. Sholagberu, A.T., Okikiola, F.O., Bashir, A., Adeniyi, A.S., Juliana, I.O., Muhammad, M.M., Abdurrasheed, A.S. 2022. Performance Evaluation of SWAT-based Model for the Prediction of Potential and Actual Evapotranspiration. Jordan Journal of Civil Engineering, 16(1).
  • 15. UN. World Population Prospects 2019; UN: New York, NY, USA, 2021.
  • 16. Voutchkov, N. 2013. Desalination engineering: planning and design. (No Title).
  • 17. WHO, Guidelines for Drinking-Water Quality, Recommendation., World Health Organization, fourth edition, 2011.
  • 18. Zoulias, E.I., Lymberopoulos, N. 2007. Technoeconomic analysis of the integration of hydrogen energy technologies in renewable energy-based stand-alone power systems, Renewable Energy, Elsevier, 32(4), 680–696.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4c10b9d6-8334-4e40-aaf1-b4f45db442e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.